High-flow nasal oxygen may prevent postextubation respiratory failure in the intensive care unit (ICU). The combination of high-flow nasal oxygen with noninvasive ventilation (NIV) may be an optimal strategy of ventilation to avoid reintubation. OBJECTIVE To determine whether high-flow nasal oxygen with prophylactic NIV applied immediately after extubation could reduce the rate of reintubation, compared with high-flow nasal oxygen alone, in patients at high risk of extubation failure in the ICU. DESIGN, SETTING, AND PARTICIPANTS Multicenter randomized clinical trial conducted from April 2017 to January 2018 among 641 patients at high risk of extubation failure (ie, older than 65 years or with an underlying cardiac or respiratory disease) at 30 ICUs in France; follow-up was until April 2018. INTERVENTIONS Patients were randomly assigned to high-flow nasal oxygen alone (n = 306) or high-flow nasal oxygen alternating with NIV (n = 342) immediately after extubation. MAIN OUTCOMES AND MEASURESThe primary outcome was the proportion of patients reintubated at day 7; secondary outcomes included postextubation respiratory failure at day 7, reintubation rates up until ICU discharge, and ICU mortality. RESULTS Among 648 patients who were randomized (mean [SD] age, 70 [10] years; 219 women [34%]), 641 patients completed the trial. The reintubation rate at day 7 was 11.8% (95% CI, 8.4%-15.2%) (40/339) with high-flow nasal oxygen and NIV and 18.2% (95% CI, 13.9%-22.6%) (55/302) with high-flow nasal oxygen alone (difference, −6.4% [95% CI, −12.0% to −0.9%]; P = .02). Among the 11 prespecified secondary outcomes, 6 showed no significant difference. The proportion of patients with postextubation respiratory failure at day 7 (21% vs 29%; difference, −8.7% [95% CI, −15.2% to −1.8%]; P = .01) and reintubation rates up until ICU discharge (12% vs 20%, difference −7.4% [95% CI, −13.2% to −1.8%]; P = .009) were significantly lower with high-flow nasal oxygen and NIV than with high-flow nasal oxygen alone. ICU mortality rates were not significantly different: 6% with high-flow nasal oxygen and NIV and 9% with high-flow nasal oxygen alone (difference, −2.4% [95% CI, −6.7% to 1.7%]; P = .25). CONCLUSIONS AND RELEVANCEIn mechanically ventilated patients at high risk of extubation failure, the use of high-flow nasal oxygen with NIV immediately after extubation significantly decreased the risk of reintubation compared with high-flow nasal oxygen alone.
This review summarizes the (patho)-physiological effects of ventilation with high FiO2 (0.8–1.0), with a special focus on the most recent clinical evidence on its use for the management of circulatory shock and during medical emergencies. Hyperoxia is a cornerstone of the acute management of circulatory shock, a concept which is based on compelling experimental evidence that compensating the imbalance between O2 supply and requirements (i.e., the oxygen dept) is crucial for survival, at least after trauma. On the other hand, “oxygen toxicity” due to the increased formation of reactive oxygen species limits its use, because it may cause serious deleterious side effects, especially in conditions of ischemia/reperfusion. While these effects are particularly pronounced during long-term administration, i.e., beyond 12–24 h, several retrospective studies suggest that even hyperoxemia of shorter duration is also associated with increased mortality and morbidity. In fact, albeit the clinical evidence from prospective studies is surprisingly scarce, a recent meta-analysis suggests that hyperoxia is associated with increased mortality at least in patients after cardiac arrest, stroke, and traumatic brain injury. Most of these data, however, originate from heterogenous, observational studies with inconsistent results, and therefore, there is a need for the results from the large scale, randomized, controlled clinical trials on the use of hyperoxia, which can be anticipated within the next 2–3 years. Consequently, until then, “conservative” O2 therapy, i.e., targeting an arterial hemoglobin O2 saturation of 88–95 % as suggested by the guidelines of the ARDS Network and the Surviving Sepsis Campaign, represents the treatment of choice to avoid exposure to both hypoxemia and excess hyperoxemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.