Conformational sampling is one of the bottlenecks in fragment-based protein structure prediction approaches. They generally start with a coarse-grained optimization where mainchain atoms and centroids of side chains are considered, followed by a fine-grained optimization with an all-atom representation of proteins. It is during this coarse-grained phase that fragment-based methods sample intensely the conformational space. If the native-like region is sampled more, the accuracy of the final all-atom predictions may be improved accordingly. In this work we present EdaFold, a new method for fragment-based protein structure prediction based on an Estimation of Distribution Algorithm. Fragment-based approaches build protein models by assembling short fragments from known protein structures. Whereas the probability mass functions over the fragment libraries are uniform in the usual case, we propose an algorithm that learns from previously generated decoys and steers the search toward native-like regions. A comparison with Rosetta AbInitio protocol shows that EdaFold is able to generate models with lower energies and to enhance the percentage of near-native coarse-grained decoys on a benchmark of proteins. The best coarse-grained models produced by both methods were refined into all-atom models and used in molecular replacement. All atom decoys produced out of EdaFold’s decoy set reach high enough accuracy to solve the crystallographic phase problem by molecular replacement for some test proteins. EdaFold showed a higher success rate in molecular replacement when compared to Rosetta. Our study suggests that improving low resolution coarse-grained decoys allows computational methods to avoid subsequent sampling issues during all-atom refinement and to produce better all-atom models. EdaFold can be downloaded from http://www.riken.jp/zhangiru/software/.
The SAMPL challenges provide an ideal opportunity for unbiased evaluation and comparison of different approaches used in computational drug design. During the fourth round of this SAMPL challenge, we participated in the virtual screening and binding pose prediction on inhibitors targeting the HIV-1 integrase enzyme. For virtual screening, we used well known and widely used in silico methods combined with personal in cerebro insights and experience. Regular docking only performed slightly better than random selection, but the performance was significantly improved upon incorporation of additional filters based on pharmacophore queries and electrostatic similarities. The best performance was achieved when logical selection was added. For the pose prediction, we utilized a similar consensus approach that amalgamated the results of the Glide-XP docking with structural knowledge and rescoring. The pose prediction results revealed that docking displayed reasonable performance in predicting the binding poses. However, prediction performance can be improved utilizing scientific experience and rescoring approaches. In both the virtual screening and pose prediction challenges, the top performance was achieved by our approaches. Here we describe the methods and strategies used in our approaches and discuss the rationale of their performances.
Motivation Genome-wide identification of the transcriptomic responses of human cell lines to drug treatments is a challenging issue in medical and pharmaceutical research. However, drug-induced gene expression profiles are largely unknown and unobserved for all combinations of drugs and human cell lines, which is a serious obstacle in practical applications. Results Here, we developed a novel computational method to predict unknown parts of drug-induced gene expression profiles for various human cell lines and predict new drug therapeutic indications for a wide range of diseases. We proposed a tensor-train weighted optimization (TT-WOPT) algorithm to predict the potential values for unknown parts in tensor-structured gene expression data. Our results revealed that the proposed TT-WOPT algorithm can accurately reconstruct drug-induced gene expression data for a range of human cell lines in the Library of Integrated Network-based Cellular Signatures. The results also revealed that in comparison with the use of original gene expression profiles, the use of imputed gene expression profiles improved the accuracy of drug repositioning. We also performed a comprehensive prediction of drug indications for diseases with gene expression profiles, which suggested many potential drug indications that were not predicted by previous approaches. Supplementary information Supplementary data are available at Bioinformatics online.
In structure-based virtual screening (SBVS), a binding site on a protein structure is used to search for ligands with favorable nonbonded interactions. Because it is computationally difficult, docking is time-consuming and any docking user will eventually encounter a chemical library that is too big to dock. This problem might arise because there is not enough computing power or because preparing and storing so many three-dimensional (3D) ligands requires too much space. In this study, however, we show that quality regressors can be trained to predict docking scores from molecular fingerprints. Although typical docking has a screening rate of less than one ligand per second on one CPU core, our regressors can predict about 5800 docking scores per second. This approach allows us to focus docking on the portion of a database that is predicted to have docking scores below a user-chosen threshold. Herein, usage examples are shown, where only 25% of a ligand database is docked, without any significant virtual screening performance loss. We call this method “lean-docking”. To validate lean-docking, a massive docking campaign using several state-of-the-art docking software packages was undertaken on an unbiased data set, with only wet-lab tested active and inactive molecules. Although regressors allow the screening of a larger chemical space, even at a constant docking power, it is also clear that significant progress in the virtual screening power of docking scores is desirable.
Ab initio phasing is one of the remaining challenges in protein crystallography. Recent progress in computational structure prediction has enabled the generation of de novo models with high enough accuracy to solve the phase problem ab initio. This `ab initio phasing with de novo models' method first generates a huge number of de novo models and then selects some lowest energy models to solve the phase problem using molecular replacement. The amount of CPU time required is huge even for small proteins and this has limited the utility of this method. Here, an approach is described that significantly reduces the computing time required to perform ab initio phasing with de novo models. Instead of performing molecular replacement after the completion of all models, molecular replacement is initiated during the course of each simulation. The approach principally focuses on avoiding the refinement of the best and the worst models and terminating the entire simulation early once suitable models for phasing have been obtained. In a benchmark data set of 20 proteins, this method is over two orders of magnitude faster than the conventional approach. It was observed that in most cases molecular-replacement solutions were determined soon after the coarse-grained models were turned into full-atom representations. It was also found that all-atom refinement was hardly able to change the models sufficiently to enable successful molecular replacement if the coarse-grained models were not very close to the native structure. Therefore, it remains critical to generate good-quality coarse-grained models to enable subsequent all-atom refinement for successful ab initio phasing by molecular replacement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.