Open-circuit direct piezoelectric coefficients g31 of bi-axially stretched PVDF and chiral PLLA are reported. This measure is decisive for sensor, generator and energy harvesting applications. We use an in-situ method with contactless voltage measurement during a conventional tensile-test, greatly improving measurement precision (error less than 10%).
This paper presents for the first time the characterization of a smartphonesize haptic rendering system based on the friction modulation effect. According to previous work and finite element modeling, the homogeneous flexural modes are needed to get the haptic feedback effect. The device studied consists of a thin film AlN transducers deposited on an 110 × 65 mm 2 glass substrate. The transducer's localization on the glass plate allows a transparent central area of 90 × 49 mm 2 . Electrical and mechanical parameters of the system are extracted from measurement. From this extraction, the electrical impedance matching reduced the applied voltage to 17.5 V AC and the power consumption to 1.53 W at the resonance frequency of the vibrating system to reach the haptic rendering specification. Transient characterizations of the actuation highlight a delay under the dynamic tactile detection. The characterization of the AlN transducers used as sensors, including the noise rejection, the delay or the output charge amplitude allows detections with high accuracy of any variation due to external influences. Those specifications are the first step to a low powerconsumption feedbacklooped system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.