In this paper, we explore the potential of gaze data as a source of information to predict learning as students interact with MetaTutor, an ITS that scaffolds self-regulated learning. Using data from 47 college students, we show that a classifier using a variety of gaze features achieves considerable accuracy in predicting student learning after seeing gaze data from the complete interaction. We also show promising results on the classifier ability to detect learning in real-time during interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.