Knowledge on the distribution and abundance of organisms is fundamental to understanding their roles within ecosystems and their ecological importance for other taxa. Such knowledge is currently lacking for insects, which have long been regarded as the “little things that run the world”. Even for ubiquitous insects, such as ants, which are of tremendous ecological significance, there is currently neither a reliable estimate of their total number on Earth nor of their abundance in particular biomes or habitats. We compile data on ground-dwelling and arboreal ants to obtain an empirical estimate of global ant abundance. Our analysis is based on 489 studies, spanning all continents, major biomes, and habitats. We conservatively estimate total abundance of ground-dwelling ants at over 3 × 10 15 and estimate the number of all ants on Earth to be almost 20 × 10 15 individuals. The latter corresponds to a biomass of ∼12 megatons of dry carbon. This exceeds the combined biomass of wild birds and mammals and is equivalent to ∼20% of human biomass. Abundances of ground-dwelling ants are strongly concentrated in tropical and subtropical regions but vary substantially across habitats. The density of leaf-litter ants is highest in forests, while the numbers of actively ground-foraging ants are highest in arid regions. This study highlights the central role ants play in terrestrial ecosystems but also major ecological and geographic gaps in our current knowledge. Our results provide a crucial baseline for exploring environmental drivers of ant-abundance patterns and for tracking the responses of insects to environmental change.
Invasive species are one of the main threats to biodiversity worldwide and the processes enabling their establishment and persistence remain poorly understood. In generalist consumers, plasticity in diet and trophic niche may play a crucial role in invasion success. There is growing evidence that invasive ants, in particular, occupy lower trophic levels in their introduced range compared to the native one, but evidences remain fragmented. We conducted stable isotope analysis at five locations distributed on two continents to infer the trophic position of the invasive ant Formica paralugubris in the native and introduced part of the range. This species forms large colonies and can be a voracious predator while feeding on sugar-based resources as well. Whereas native populations had trophic positions comparable to that of an omnivore, the introduced populations varied from being honeydew specialists to top predators, or omnivore. Where other ant species co-occurred, there was no overlap in their trophic niches, and F. paralugubris occupied the lower position, suggesting that trophic displacement may enable the coexistence of different ant species. Taken together, our results suggest that shifts in diet associated with changes in the trophic niche of introduced species might mediate invasion success and enable long-term coexistence with native species.
The continuous increase in urbanization has been perceived as a major threat for biodiversity, particularly within tropical regions. Urban areas, however, may still provide opportunities for conservation. In this study focused on Macao (China), one of the most densely populated regions on Earth, we used a comprehensive approach, targeting all the vertical strata inhabited by ants, to document the diversity of both native and exotic species, and to produce an updated checklist. We then compared these results with 112 studies on urban ants to illustrate the dual roles of cities in sustaining ant diversity and supporting the spread of exotic species. Our study provides the first assessment on the vertical distribution of urban ant communities, allowing the detection of 55 new records in Macao, for a total of 155 ant species (11.5% being exotic); one of the highest species counts reported for a city globally. Overall, our results contrast with the dominant paradigm that urban landscapes have limited conservation value but supports the hypothesis that cities act as gateways for exotic species. Ultimately, we argue for a more comprehensive understanding of ants within cities around the world to understand native and exotic patterns of diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.