Cardiac patients after an acute event and/or with chronic heart disease deserve special attention to restore their quality of life and to maintain or improve functional capacity. They require counselling to avoid recurrence through a combination of adherence to a medication plan and adoption of a healthy lifestyle. These secondary prevention targets are included in the overall goal of cardiac rehabilitation (CR). Cardiac rehabilitation can be viewed as the clinical application of preventive care by means of a professional multi-disciplinary integrated approach for comprehensive risk reduction and global long-term care of cardiac patients. The CR approach is delivered in tandem with a flexible follow-up strategy and easy access to a specialized team. To promote implementation of cardiac prevention and rehabilitation, the CR Section of the EACPR (European Association of Cardiovascular Prevention and Rehabilitation) has recently completed a Position Paper, entitled 'Secondary prevention through cardiac rehabilitation: A condition-oriented approach'. Components of multidisciplinary CR for seven clinical presentations have been addressed. Components include patient assessment, physical activity counselling, exercise training, diet/nutritional counselling, weight control management, lipid management, blood pressure monitoring, smoking cessation, and psychosocial management. Cardiac rehabilitation services are by definition multi-factorial and comprehensive, with physical activity counselling and exercise training as central components in all rehabilitation and preventive interventions. Many of the risk factor improvements occurring in CR can be mediated through exercise training programmes. This call-for-action paper presents the key components of a CR programme: physical activity counselling and exercise training. It summarizes current evidence-based best practice for the wide range of patient presentations of interest to the general cardiology community.
It is well known that oestrogens exert muscle anabolic and metabolic effects. Oestrogens act via specific oestrogen receptor (ER) proteins. The mainly represented oestrogen receptor alpha messenger ribonucleic acid subtype (ER(alpha) mRNA) was described in various tissues including the skeletal muscle. Moreover, it has been shown that endurance training significantly increases ER(alpha) mRNA levels in the female rat gastrocnemius muscle. The aim of this study was to determine if this training programme also modifies ER(alpha) mRNA levels in muscles with different typology, the soleus (slow twitch muscle), extensor digitorum longus (fast twitch muscle) and gastrocnemius (intermediate muscle). So far, two groups of Wistar female rats were set up: untrained (u) (n = 7), and trained (e) (n = 7). The endurance training programme was performed for 7 weeks, 5 days per week and consisted of 1 h of continuous running on an adapted motor-driven treadmill involving progressive intensity and gradient of the treadmill. Three different skeletal muscles, extensor digitorum longus (E), gastrocnemius (G) and soleus (S), were isolated and weighed in the untrained (Eu, Gu and Su) and trained group (Ee, Ge and Se). Semi-quantification of ER(alpha) mRNA levels was performed by the reverse transcriptase-polymerase chain reaction (RT-PCR) technique. In order to attest the efficiency of our endurance training programme, the citrate synthase activity (CS) of each muscle was measured by a fluorimetric method. The CS activity was significantly increased with training in the gastrocnemius [100.00 +/- 4.99% in Gu (n = 6) vs. 138.10 +/- 8.82% in Ge (n = 6), P < 0.01] and in the soleus [100.00 +/- 2.92% in Su (n = 7) vs. 115.90 +/- 3.71% in Se (n = 7), P < 0.01] but not in the extensor digitorum longus [100.00 +/- 1.87% in Eu (n = 7) vs. 96.90 +/- 1.55% in Ee (n = 7)]. Concerning the influence of muscle type on ER(alpha) mRNA level (1) in the untrained group, the ER(alpha) mRNA level was significantly higher in soleus muscle compared with gastrocnemius and extensor digitorum longus muscles [0.43 +/- 0.04 in Su (n = 7) compared with 0.31 +/- 0.03 in Gu (n = 6) and 0.21 +/- 0.03 in Eu (n = 7), P < 0.05; P < 0.05); 2] in the trained group, the ER(alpha) mRNA level was significantly higher insoleus and gastrocnemius muscles compared with extensor digitorum longus muscle [0.43 +/- 0.06 in Se (n = 7) and 0.49 +/- 0.05 in Ge (n = 6) vs. 0.12 +/- 0.01 in Ee (n = 7), P < 0.05; P < 0.05]. Indeed, after training, the ER(alpha) mRNA level significantly increased in gastrocnemius muscle [0.31 +/- 0.03 in Gu(n = 6) vs. 0.49 +/- 0.05 in Ge (n = 6), P < 0.01], significantly decreased in extensor digitorum longus [0.21 +/- 0.03 in Eu (n = 7) vs. 0.12 +/- 0.01 in Ee (n = 7), P < 0.01] and was not significantly modified in soleus [0.43 +/- 0.04 in Su (n = 7) vs. 0.43 +/- 0.06 in Se (n = 7)]. The differences in ER(alpha) mRNA level between trained and untrained animals indicate training-induced effects that are specific to the skeletal muscle type.
Regular and moderate physical activity practice provides many physiological benefits. It reduces the risk of disease outcomes and is the basis for proper rehabilitation after a severe disease. Aerobic activity and strength exercises are strongly recommended in order to maintain autonomy with ageing. Balanced activity of both types is important, especially to the elderly population. Several methods have been proposed to monitor aerobic activities. However, no appropriate method is available for controlling more complex parameters of strength exercises. Within this context, the present article introduces a personalized, home-based strength exercise trainer designed for the elderly. The system guides a user at home through a personalized exercise program. Using a network of wearable sensors the user's motions are captured. These are evaluated by comparing them to prescribed exercises, taking both exercise load and technique into account. Moreover, the evaluation results are immediately translated into appropriate feedback to the user in order to assist the correct exercise execution. Besides the direct feedback, a major novelty of the system is its generic personalization by means of a supervised teach-in phase, where the program is performed once under supervision of a physical activity specialist. This teach-in phase allows the system to record and learn the correct execution of exercises for the individual user and to provide personalized monitoring. The user-driven design process, the system development and its underlying activity monitoring methodology are described. Moreover, technical evaluation results as well as results concerning the usability of the system for ageing people are presented. The latter has been assessed in a clinical study with thirty participants of 60 years or older, some of them showing usual diseases or functional limitations observed in elderly population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.