Recent research has shown that magnetorheological fluid can undergo squeeze-strengthening when flow conditions promote filtration. While a Péclet number has been used to predict filtration in non-magnetic two-phase fluids submitted to slow compression, the approach has yet to be adapted to magnetorheological fluid behavior in order to predict the conditions leading to squeeze-strengthening behavior of magnetorheological fluid. In this article, a Péclet number is derived and adapted to the Bingham rheological model. This Péclet number is then compared to the experimental occurrence of squeeze-strengthening behavior obtained from several squeeze geometries and magnetorheological fluid compositions submitted to pure-squeeze conditions. Results show that the Péclet number well predicts the occurrence of squeeze-strengthening behavior in high-concentration magnetorheological fluid made from various particle sizes and using various squeeze geometries. Moreover, it is shown that squeeze-strengthening occurrence is increased when using annulus geometries or by increasing average particle radius. While lowering concentration increases filtration, tested conditions only led to squeeze-strengthening behavior after concentration had increased close to packing limit. Altogether, results suggest that the Péclet number derived in this study can be used to predict the occurrence of squeeze-strengthening for various magnetorheological fluids and squeeze geometries using the well-known rheological properties of magnetorheological fluids.
Under squeezing flow, magnetorheological fluid can undergo a strengthening phenomenon which results in a drastic increase of its yield stress. This behavior, also known as the super-strong effect, could be used to significantly increase the performance (e.g. torque-to-weight) of rotary magnetorheological fluid devices (e.g. brakes, clutches), but has yet to be exploited due to limited predictability of the phenomenon. To better understand the occurrence of the super-strong effect, a novel test bench capable of small amplitude oscillatory shear is designed to study the behavior of highconcentration magnetorheological fluid submitted to different simultaneous squeeze-shear conditions and magnetic field strengths. Experimental results, obtained up to 5 mm/s compression speed, show that the squeeze-strengthening effect can be correlated to the Péclet number when squeeze flow is dominant, suggesting that the super-strong behavior is governed by solid-liquid phase separation. This super-strong effect, however, is found greatly reduced when the superimposed shear-rate approaches the squeeze-rate order of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.