Pollen identification is required in different scenarios such as prevention of allergic reactions, climate analysis or apiculture. However, it is a time-consuming task since experts are required to recognize each pollen grain through the microscope. In this study, we performed an exhaustive assessment on the utility of texture analysis for automated characterisation of pollen samples. A database composed of 1800 brightfield microscopy images of pollen grains from 15 different taxa was used for this purpose. A pattern recognition-based methodology was adopted to perform pollen classification. Four different methods were evaluated for texture feature extraction from the pollen image: Haralick's gray-level co-occurrence matrices (GLCM), log-Gabor filters (LGF), local binary patterns (LBP) and discrete Tchebichef moments (DTM). Fisher's discriminant analysis and k-nearest neighbour were subsequently applied to perform dimensionality reduction and multivariate classification, respectively. Our results reveal that LGF and DTM, which are based on the spectral properties of the image, outperformed GLCM and LBP in the proposed classification problem. Furthermore, we found that the combination of all the texture features resulted in the highest performance, yielding an accuracy of 95%. Therefore, thorough texture characterisation could be considered in further implementations of automatic pollen recognition systems based on image processing techniques.
Model-based image segmentation is a popular approach for the segmentation of anatomical structures from medical images because it includes prior knowledge about the shape and appearance of structures of interest. This paper focuses on the formulation of a novel appearance prior that can cope with large variability between subjects, for instance due to the presence of pathologies. Instead of relying on Principal Component Analysis such as in Statistical Appearance Models, our approach relies on a multimodal intensity profile atlas from which a point may be assigned to several profile modes consisting of a mean profile and its covariance matrix. These profile modes are first estimated without any intra-subject registration through a boosted EM classification based on spectral clustering. Then, they are projected on a reference mesh whose role is to store the appearance information in a common geometric representation. We show that this prior leads to better performance than the classical monomodal Principal Component Analysis approach while relying on fewer profile modes.
Today computer models and computer simulations of the musculoskeletal system are widely used to study the mechanisms behind human gait and its disorders. The common way of creating musculoskeletal models is to use a generic musculoskeletal model based on data derived from anatomical and biomechanical studies of cadaverous specimens. To adapt this generic model to a specific subject, the usual approach is to scale it. This scaling has been reported to introduce several errors because it does not always account for subject-specific anatomical differences. As a result, a novel semi-automatic workflow is proposed that creates subject-specific musculoskeletal models from Magnetic Resonance Imaging (MRI) datasets and motion capture data. Based on subject-specific medical data and a model-based automatic segmentation approach, an accurate modeling of the anatomy can be produced while avoiding the scaling operation. This anatomical model coupled with motion capture data, joint kinematics information and muscle-tendons actuators is finally used to create a subject-specific musculoskeletal model.
Abstract. Model-based image segmentation requires prior information about the appearance of a structure in the image. Instead of relying on Principal Component Analysis such as in Statistical Appearance Models, we propose a method based on a regional clustering of intensity profiles that does not rely on an accurate pointwise registration. Our method is built upon the Expectation-Maximization algorithm with regularized covariance matrices and includes spatial regularization. The number of appearance regions is determined by a novel model order selection criterion. The prior is described on a reference mesh where each vertex has a probability to belong to several intensity profile classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.