We state and prove a combination theorem for relatively hyperbolic groups seen as geometrically finite convergence groups. For that, we explain how to contruct a boundary for a group that is an acylindrical amalgamation of relatively hyperbolic groups over a fully quasi-convex subgroup. We apply our result to Sela's theory on limit groups and prove their relative hyperbolicity. We also get a proof of the Howson property for limit groups.
International audienceWe give a solution to Dehn’s isomorphism problem for the class of all hyperbolic groups, possibly with torsion. We also prove a relative version for groups with peripheral structures. As a corollary, we give a uniform solution to Whitehead’s problem asking whether two tuples of elements of a hyperbolic group G are in the same orbit under the action of Aut(G). We also get an algorithm computing a generating set of the group of automorphisms of a hyperbolic group preserving a peripheral structure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.