We report a strategy for realizing tunable electrical conductivity in metal-organic frameworks (MOFs) in which the nanopores are infiltrated with redox-active, conjugated guest molecules. This approach is demonstrated using thin-film devices of the MOF Cu3(BTC)2 (also known as HKUST-1; BTC, benzene-1,3,5-tricarboxylic acid) infiltrated with the molecule 7,7,8,8-tetracyanoquinododimethane (TCNQ). Tunable, air-stable electrical conductivity over six orders of magnitude is achieved, with values as high as 7 siemens per meter. Spectroscopic data and first-principles modeling suggest that the conductivity arises from TCNQ guest molecules bridging the binuclear copper paddlewheels in the framework, leading to strong electronic coupling between the dimeric Cu subunits. These ohmically conducting porous MOFs could have applications in conformal electronic devices, reconfigurable electronics, and sensors.
Nonvolatile redox transistors (NVRTs) based upon Li-ion battery materials are demonstrated as memory elements for neuromorphic computer architectures with multi-level analog states, "write" linearity, low-voltage switching, and low power dissipation. Simulations of backpropagation using the device properties reach ideal classification accuracy. Physics-based simulations predict energy costs per "write" operation of <10 aJ when scaled to 200 nm × 200 nm.
Based on the concept of band-bending at metal/semiconductor interfaces as an energy filter for electrons, we present a theory for the enhancement of the thermoelectric properties of semiconductor materials with metallic nanoinclusions. We show that the Seebeck coefficient can be significantly increased due to a strongly energy-dependent electronic scattering time. By including phonon scattering, we find that the enhancement of ZT due to electron scattering is important for high doping, while at low doping it is primarily due to decrease of the phonon thermal conductivity. 72.15.Eb,
II. CHARGE AND HEAT TRANSPORT IN BULK PBTEIn this section we will review the expressions 7,8,9 for the charge and heat transport in bulk PbTe with n-type
Existing models of electrical contacts are often inapplicable at the nanoscale because there are significant differences between nanostructures and bulk materials arising from unique geometries and electrostatics. In this Review, we discuss the physics and materials science of electrical contacts to carbon nanotubes, semiconductor nanowires and graphene, and outline the main research and development challenges in the field. We also include a case study of gold contacts to germanium nanowires to illustrate these concepts.
Carbon nanotubes (CNTs) are amongst the most explored one-dimensional nanostructures and have attracted tremendous interest from fundamental science and technological perspectives. Albeit topologically simple, they exhibit a rich variety of intriguing electronic properties, such as metallic and semiconducting behaviour. Furthermore, these structures are atomically precise, meaning that each carbon atom is still three-fold coordinated without any dangling bonds. CNTs have been used in many laboratories to build prototype nanodevices. These devices include metallic wires, field-effect transistors, electromechanical sensors and displays. They potentially form the basis of future all-carbon electronics.This review deals with the building blocks of understanding the device physics of CNTbased nanodevices. There are many features that make CNTs different from traditional materials, including chirality-dependent electronic properties, the one-dimensional nature of electrostatic screening and the presence of several direct bandgaps. Understanding these novel properties and their impact on devices is crucial in the development and evolution of CNT applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.