Quadrotor drones equipped with high-quality cameras have rapidly raised as novel, cheap, and stable devices for filmmakers. While professional drone pilots can create aesthetically pleasing videos in short time, the smooth—and cinematographic—control of a camera drone remains challenging for most users, despite recent tools that either automate part of the process or enable the manual design of waypoints to create drone trajectories. This article moves a step further by offering high-level control of cinematographic drones for the specific task of framing dynamic targets. We propose techniques to automatically and interactively plan quadrotor drone motions in dynamic three-dimensional (3D) environments while satisfying both cinematographic and physical quadrotor constraints. We first propose the Drone Toric Space , a dedicated camera parameter space with embedded constraints, and derive some intuitive on-screen viewpoint manipulators. Second, we propose a dedicated path planning technique that ensures both that cinematographic properties can be enforced along the path and that the path is physically feasible by a quadrotor drone. At last, we build on the Drone Toric Space and the specific path planning technique to coordinate the motion of multiple drones around dynamic targets. A number of results demonstrate the interactive and automated capacities of our approaches on different use-cases.
The movie industry has been using Unmanned Aerial Vehicles as a new tool to produce more and more complex and aesthetic camera shots. However, the shooting process currently rely on manual control of the drones which makes it difficult and sometimes inconvenient to work with. In this paper we address the lack of autonomous system to operate generic rotary-wing drones for shooting purposes. We propose a global control architecture based on a high-level generic API used by many UAV. Our solution integrates a compound and coupled model of a generic rotary-wing drone and a Full State Feedback strategy. To address the specific task of capturing cinema scenes, we combine the control architecture with an automatic camera path planning approach that encompasses cinematographic techniques. The possibilities offered by our system are demonstrated through a series of experiments.
Figure 1: We introduce a set of high-level tools for filming dynamic targets with quadrotor drones. We first propose a specific camera parameter space (the Drone Toric space) together with on-screen viewpoint manipulators compatible with the physical constraints of a drone. We then propose a real-time path planning approach in dynamic environments which ensures both cinematographic properties in viewpoints along the path and feasibility of the path by a quadrotor drone (see green quadrotor). We also present a sketching tool that generates feasible trajectories from hand drawn input paths (see red quadrotor). Finally we propose to coordinate positions and motions of multiple drones around the dynamic targets to ensure the coverture of cinematographic distinct viewpoints (see blue quadrotors).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.