Background: Parasite fatty acid synthesis is an attractive drug target but complex and poorly understood. Results: We delineate the molecular activity of two pathways in Toxoplasma combining metabolomic and genetic analyses.
Conclusion:The apicoplast is a significant source of fatty acids, and its products are further modified in the parasite endoplasmic reticulum. Significance: We define the metabolic host-parasite relationship with molecular resolution in intracellular parasites.
Background: Glycans are synthesized in the Golgi by sequentially acting glycosyltransferases, but it is not known how their functions are coordinated in live cells. Results: N-and O-glycosyltransferases form enzymatically active homo-and/or heteromeric complexes. Conclusion: Glycosyltransferases function as physically distinct enzyme complexes rather than single enzymes. Significance: The results help understand the overall functioning of the Golgi glycosylation pathways both in health and disease.
SUMMARY
Most simian immunodeficiency viruses use their Nef protein to antagonize the host restriction factor tetherin. A deletion in human tetherin confers Nef resistance, representing a hurdle to successful zoonotic transmission. HIV-1 group M evolved to utilize the viral protein U (Vpu) to counteract tetherin. Although HIV-1 group O has spread epidemically in humans, it has not evolved a Vpu-based tetherin antagonism. Here we show that HIV-1 group O Nef targets a region adjacent to this deletion to inhibit transport of human tetherin to the cell surface, enhances virion release, and increases viral resistance to inhibition by interferon-α. The Nef protein of the inferred common ancestor of group O viruses is also active against human tetherin. Thus, Nef-mediated antagonism of human tetherin evolved prior to the spread of HIV-1 group O and likely facilitated secondary virus transmission. Our results may explain the epidemic spread of HIV-1 group O.
IMPORTANCEIn this paper, we define that HIV-1 Nef and Vpu display a surprising functional overlap and affect the cell surface exposure of a previously unexpected breadth of cellular receptors. Our analyses furthermore identify the tetraspanin protein family as a previously unrecognized target of Nef and Vpu activity. These findings have implications for the interpretation of effects detected for these accessory gene products on individual host cell receptors and illustrate the coevolution of Nef and Vpu function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.