Research on the detrimental effects of stress in the brain has mainly focused on the hippocampus. Because prefrontal cortex (PFC) dysfunction characterizes many stress-related disorders, we here analyzed the impact of chronic stress in rats on the integrity of the hippocampal-PFC pathway, monitored by behavioral and electrophysiological function and morphological assessment. We show that chronic stress impairs synaptic plasticity by reducing LTP induction in the hippocampal-PFC connection; in addition, it induces selective atrophy within the PFC and severely disrupts working memory and behavioral flexibility, two functions that depend on PFC integrity. We also demonstrate that short periods of stress exposure induce spatial reference memory deficits before affecting PFC-dependent tasks, thus suggesting that the impairment of synaptic plasticity within the hippocampus-to-PFC connection is of relevance to the stressinduced PFC dysfunction. These findings evidence a fundamental role of the PFC in maladaptive responses to stress and identify this area as a target for intervention in stress-related disorders.
Melatonin has a key role in the circadian rhythm relay to periphery organs. Melatonin exerts its multiple roles mainly through two seven transmembrane domain, G-coupled receptors, namely MT1 or MT2 receptors. A pharmacological characterization of these human cloned melatonin hMT1 and hMT2 receptors stably expressed in HEK-293 or CHO cells is presented using a 2-[125I]-iodo-melatonin binding assay and a [35S]-GTPgammaS functional assay. Both reference compounds and new chemically diverse ligands were evaluated. Binding affinities at each receptor were found to be comparable on either HEK-293 or CHO cell membranes. Novel non-selective or selective hMT1 and hMT2 ligands are described. The [35S]-GTPgammaS functional assay was used to define the functional activity of these compounds which included partial, full agonist and/or antagonist activity. None of the compounds acted as an inverse agonist. We report new types of selective antagonists, such as S 25567 and S 26131 for MT1 and S 24601 for MT2. These studies brought other new molecular tools such as the selective MT1 agonist, S 24268, as well as the non-selective antagonist, S 22153. Finally, we also discovered S 25150, the most potent melatonin receptor agonist, so far reported in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.