-Ruminant phosphorus excretion and metabolism were studied through a database. Faecal endogenous phosphorus is the main pathway of phosphorus excretion and averages 0.85 of total faecal phosphorus. The remaining 0.15 is unabsorbed dietary phosphorus. Faecal endogenous phosphorus is mainly unabsorbed phosphorus, with saliva being the major source, and is correlated to factors influencing saliva secretion (DM intake, physical dietary characteristics and dietary phosphorus content). Another source of faecal endogenous phosphorus is rumen microbial phosphorus that escaped solubilisation during post-rumen digestion. All factors stimulating microbial growth would increase phosphorus uptake by the rumen microbes and consequently the faecal endogenous phosphorus. Understanding the determinants of faecal endogenous phosphorus flow will help to precise the determination of net phosphorus requirements for maintenance. The role of plasma phosphorus in urinary phosphorus loss is discussed.excretion / phosphorus / quantitative aspect / ruminant
Twenty-four dairy goats were used in a preliminary trial to evaluate the effect of the genotype for alpha S1-casein (alpha S1-CN) in milk [homozygous variant A/A (n = 12) or F/F (n = 12)] on milk yield and composition for 2 wk from kidding. After this period, the main trial aimed at determining the effects of the genotype for alpha S1-CN in milk, the dietary crude protein concentration on milk yield and composition, and utilization of N, Ca and P. The goats within each genotype were allocated to a 3 x 3 Latin square for 14 wk with three crude protein concentrations in the total mixed ration (13.2, 16.8, and 19.8% of dry matter) and three periods (wk 3 to 6, wk 8 to 11, and wk 13 to 16 postpartum) as factors. Balances of N, Ca, and P were determined in the last week of each period. Two wk after kidding, the alpha S1-CN A/A goats had higher percentage and yield of protein and lower body weight than the alpha S1-CN F/F goats. During the main trial, yields of protein and fat, as well as percentages of fat and protein in milk were higher for the alpha S1-CN A/A goats than for the alpha S1-CN F/F goats, independent of dietary CP concentration and period. Efficiency of N digestion for milk N was higher for the alpha S1-CN A/A goats than for the alpha S1-CN F/F goats. Urinary N as a percentage of digested N, and total N excretion expressed relative to milk N were lower for the alpha S1-CN A/A goats than for the alpha S1-CN F/F goats. Neither the apparent absorption of calcium or phosphorus was affected by the genotype for alpha S1-CN. Goats fed the low crude protein diet had lower milk yield and lower yields of fat and protein than those fed the other diets. Increasing dietary crude protein concentration increased urinary N, milk N, and N excretion relative to milk N; it also decreased the efficiency of digested N for milk N. In conclusion, selection of goats with a genetically higher yield of casein and fed with diets formulated to reduce N excretion improves the cheese-making properties of goat milk and reduces concerns about N wastes in the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.