International audienceValleys are rarely studied as specific relief elements. We propose a typology based on morphological data processing from a digital elevation model (DEM). Valleys were extracted from the hydrographic network and STRAHLER stream ordering, as well as a width strip, which varied depending on the ordering. Elevation data were processed using the "Topographic Position Index" (TPI). Changes in the slope at the bottom and on the sides of the valley as well as the width of the valley floor were the main criteria used for segmentation of the valley into homogeneous sections. For each section, twelve variables were statistically analysed to build a typology. The method was applied to the Maine watershed (22,300 km2), which has a high density of valleys in the sedimentary strata in the western part of the Paris Basin as well as in the hard rocks of the Armorican Massif. Data analys identified 548 sections divided into twelve types and subtypes. Results reveal a wide range of forms whose distribution is not explained by the stream ordering, but is clearly linked to the nature of the substratum rocks. These results can be used in different approaches for the identification of landscape units and to study floodplain areas.Nous proposons une méthode pour élaborer une typologie morphologique des vallées, fondée sur un traitement de données extraites automatiquement d'un MNT. Les vallées sont repérées à partir des cours d'eau classés selon STRAHLER et dans un espace dont la largeur varie de part et d'autre de ces cours d'eau selon leur ordination. Les données d'altitude ont été traitées à partir de l'outil "Topographic Position Index" (TPI) disponible en tant qu'extension pour les logiciels ArcView et ArcGIS. Les variations de l'inclinaison du fond et des versants, ainsi que la largeur du fond des vallées, sont les critères principaux utilisés pour découper les vallées en tronçons homogènes. Pour chaque tronçon, le traitement statistique de douze variables a permis de les caractériser et de déterminer une typologie. La méthode est appliquée au bassin versant de la Maine (22314 km2), où les vallées sont inscrites dans des plateaux dégagés dans les strates sédimentaires de l'ouest du Bassin de Paris et dans les roches dures du Massif Armoricain. Le traitement des données a permis de déterminer 548 tronçons, regroupés en douze types et sous-types. La carte des vallées par type montre, outre la diversité des formes, leur répartition à l'intérieur du bassin. Celle-ci est peu expliquée par l'ordre des cours d'eau, mais bien davantage par la nature du substratum encaissant. Ces résultats peuvent servir dans diverses approches concernant les paysages, ou encore pour l'étude des zones inondables
Regardless of their biogeographic origins or degree of artificialization, the world’s forests are a source of a wide range of ecosystem services (ES). However, the quality and quantity of these services depend on the type of forest studied and its phytogeographic context. Our objective is to transpose the concept of ES, in particular, the assessment of forest ES, to the specific Mediterranean context of the North African mountains, where this issue is still in its infancy and where access to the data needed for assessment remains difficult. Our work presents an introductory approach, allowing us to set up methodological and scientific milestones based on open-access remote sensing data and already tested geospatial processing associated with phytoecological surveys to assess the ES provided by forests in an Algerian study area. Specifically, several indicators used to assess (both qualitatively and quantitatively) the potential ES of the Ouled Hannèche forest, a forest located in the Hodna Mountains, are derived from LANDSAT 8 OLI images from 2017 and an ALOS AW3D30 DSM. The qualitative ES typology is jointly based on an SVM classification of topographically corrected LANDSAT images and a geomorphic-type classification using the geomorphon method. NDVI is a quantitative estimator of many plant ecosystem functions related to ES. It highlights the variations in the provision of ES according to the types of vegetation formations present. It serves as a support for estimating spectral heterogeneity through Rao’s quadratic entropy, which is considered a relative indicator of biodiversity at the landscape scale. The two previous variables (the multitemporal NDVI and Rao’s Q), completed by the Shannon entropy method applied to the geomorphon classes as a proxy for topo-morphological heterogeneity, constitute the input variables of a quantitative map of the potential supply of ES in the forest determined by Spatial Multicriteria Analysis (SMCA). Ultimately, our results serve as a useful basis for land-use planning and biodiversity conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.