International audienceWe give an algorithm which represents the radical J of a finitely generated differential ideal as an intersection of radical differential ideals. The computed representation provides an algorithm for testing membership in J. This algorithm works over either an ordinary or a partial differential polynomial ring of characteristic zero. It has been programmed. We also give a method to obtain a obtain a characteristic set of J, if the ideal is prime
International audienceThis paper deals with systems of polynomial di erential equations, ordinary or with partial derivatives. The embedding theory is the di erential algebra of Ritt and Kolchin. We describe an algorithm, named Rosenfeld-Gröbner, which computes a representation for the radical p of the diff erential ideal generated by any such sys- tem . The computed representation constitutes a normal simpli er for the equivalence relation modulo p (it permits to test embership in p). It permits also to compute Taylor expansions of solutions of . The algorithm is implemented within a package in MAPLE
Regularization of the inverse problem is a complex issue when using near-field acoustic holography (NAH) techniques to identify the vibrating sources. This paper shows that, for convex homogeneous plates with arbitrary boundary conditions, alternative regularization schemes can be developed based on the sparsity of the normal velocity of the plate in a well-designed basis, i.e., the possibility to approximate it as a weighted sum of few elementary basis functions. In particular, these techniques can handle discontinuities of the velocity field at the boundaries, which can be problematic with standard techniques. This comes at the cost of a higher computational complexity to solve the associated optimization problem, though it remains easily tractable with out-of-the-box software. Furthermore, this sparsity framework allows us to take advantage of the concept of compressive sampling; under some conditions on the sampling process (here, the design of a random array, which can be numerically and experimentally validated), it is possible to reconstruct the sparse signals with significantly less measurements (i.e., microphones) than classically required. After introducing the different concepts, this paper presents numerical and experimental results of NAH with two plate geometries, and compares the advantages and limitations of these sparsity-based techniques over standard Tikhonov regularization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.