The hemoglobin b S sickle mutation is a textbook case in which natural selection maintains a deleterious mutation at high frequency in the human population. Homozygous individuals for this mutation develop sickle-cell disease, whereas heterozygotes benefit from higher protection against severe malaria. Because the overdominant b S allele should be purged almost immediately from the population in the absence of malaria, the study of the evolutionary history of this iconic mutation can provide important information about the history of human exposure to malaria. Here, we sought to increase our understanding of the origins and time depth of the b S mutation in populations with different lifestyles and ecologies, and we analyzed the diversity of HBB in 479 individuals from 13 populations of African farmers and rainforest hunter-gatherers. Using an approximate Bayesian computation method, we estimated the age of the b S allele while explicitly accounting for population subdivision, past demography, and balancing selection. When the effects of balancing selection are taken into account, our analyses indicate a single emergence of b S in the ancestors of present-day agriculturalist populations $22,000 years ago. Furthermore, we show that rainforest hunter-gatherers have more recently acquired the b S mutation from the ancestors of agriculturalists through adaptive gene flow during the last $6,000 years. Together, our results provide evidence for a more ancient exposure to malarial pressures among the ancestors of agriculturalists than previously appreciated, and they suggest that rainforest hunter-gatherers have been increasingly exposed to malaria during the last millennia.
Few studies have analyzed the gut microbiota of child in unindustrialized countries, but none during the first month of life. Stool samples were collected from healthy newborns in hospitals of Gabon (n = 6) and Republic of the Congo (n = 9) at different time points during the first month of life: meconium, day 2 (D02), day 7 (D07) and day 28 (D28). In addition, one fecal sample was collected from each mother after delivery. Metagenomic sequencing was performed to determine the bacterial communities, and multiplex real-time PCR was used to detect the presence of seven enteric viruses (rotavirus a, adenovirus, norovirus I and II, sapovirus, astrovirus, enterovirus) in these samples. Bacterial diversity was high in the first days of life, and was dominated by the genus Prevotella. Then, it rapidly decreased and remained low up to D28 when the gut flora was composed almost exclusively of strictly anaerobic bacteria. Each infant’s fecal bacterial microbiota composition was significantly closer to that of their mother than to that of any other woman in the mothers’ group, suggesting an intrauterine, placental or amniotic fluid origin of such bacteria. Moreover, bacterial communities differed according to the delivery mode. Overall, the bacterial microbiota communities displayed a similar diversification and expansion in newborns within and between countries during the first four weeks of life. Moreover, six of the fifteen infants of this study harbored enteric viruses (rotavirus, enterovirus and adenovirus) in fecal samples, but never in the meconium. A maternal source for the viruses detected at D02 and D07 can be excluded because none of them was found also in the child’s mother. These findings improve our knowledge on the gut bacterial and viral communities of infants from two Sub-Saharan countries during their first month of life.
While the role of intestinal microbiota is increasingly recognized in the etiology of digestive cancers, its effects on the development of cancer in other parts of the body have been little studied. Through new-generation sequencing, we aimed to identify an association between the structure of intestinal microbiota and the presence of eye disc tumor in Drosophila larvae. First, we observed a parental effect on the diversity and structure of bacterial communities. Second, we identified a bacterial signature (at the family level) of cancer: cancerous larvae host a significantly lower relative abundance of Bacillaceae than individuals that did not develop the tumor. Thus, for the first time, we showed that a non-digestive cancer, i.e., in the brain, could be associated with an altered composition of the gut microbial community. Finally, we discuss the potential implications of the immune system in the gut–brain axis concept to explain the long-distant effect of intestinal microbiota on brain tumors. We also highlight the potential of our results in a therapeutic perspective for brain cancer that could be generalized for other cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.