Purpose This two-part, first-in-human study was initiated in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors (FGFRs) to determine the maximum tolerated dose (MTD), the recommended phase II dose (RP2D), and the schedule, safety, pharmacokinetics, pharmacodynamics, and antitumor activity of oral BGJ398, a selective FGFR1-3 tyrosine kinase inhibitor. Patients and Methods Adult patients were treated with escalating dosages of BGJ398 5 to 150 mg once daily or 50 mg twice daily continuously in 28-day cycles. During expansion at the MTD, patients with FGFR1-amplified squamous cell non-small-cell lung cancer (sqNSCLC; arm 1) or other solid tumors with FGFR genetic alterations (mutations/amplifications/fusions) received BGJ398 daily on a continuous schedule (arm 2), or on a 3-weeks-on/1-week-off schedule (arm 3). Results Data in 132 patients from the escalation and expansion arms are reported (May 15, 2015, cutoff). The MTD, 125 mg daily, was determined on the basis of dose-limiting toxicities in four patients (100 mg, grade 3 aminotransferase elevations [n = 1]; 125 mg, hyperphosphatemia [n = 1]; 150 mg, grade 1 corneal toxicity [n = 1] and grade 3 aminotransferase elevations [n = 1]). Common adverse events in patients treated at the MTD (n = 57) included hyperphosphatemia (82.5%), constipation (50.9%), decreased appetite (45.6%), and stomatitis (45.6%). A similar safety profile was observed using the 3-weeks-on/1-week-off schedule (RP2D). However, adverse event-related dose adjustments/interruptions were less frequent with the 3-weeks-on/1-week-off (50.0%) versus the continuous (73.7%) schedule. Antitumor activity (seven partial responses [six confirmed]) was demonstrated with BGJ398 doses ≥ 100 mg in patients with FGFR1-amplified sqNSCLC and FGFR3-mutant bladder/urothelial cancer. Conclusion BGJ398 at the MTD/RP2D had a tolerable and manageable safety profile and showed antitumor activity in several tumor types, including FGFR1-amplified sqNSCLC and FGFR3-mutant bladder/urothelial cancers.
Background:The current analysis was performed to evaluate the impact of PIK3CA hotspot mutations on everolimus efficacy in BOLERO-2 participants, using cell-free DNA (cfDNA) from plasma samples collected at the time of patient randomisation.Methods:PIK3CA H1047R, E545K, and E542K mutations in plasma-derived cfDNA were analysed by droplet digital PCR (ddPCR). Median PFS was estimated for patient subgroups defined by PIK3CA mutations in each treatment arm.Results:Among 550 patients included in cfDNA analysis, median PFS in everolimus vs placebo arms was similar in patients with tumours that had wild-type or mutant PIK3CA (hazard ratio (HR), 0.43 and 0.37, respectively). Everolimus also prolonged median PFS in patients with PIK3CA H1047R (HR, 0.37) and E545K/E542K mutations (HR=0.30) with a similar magnitude.Conclusions:Mutation analysis of plasma-derived cfDNA by ddPCR suggests that PFS benefit of everolimus was maintained irrespective of PIK3CA genotypes, consistent with the previous analysis of archival tumour DNA by next-generation sequencing.
The 8p12 locus (containing the FGFR1 tyrosine kinase gene) is frequently amplifi ed in squamous cell lung cancer. However, it is currently unknown which of the 8p12-amplifi ed tumors are also sensitive to fi broblast growth factor receptor (FGFR) inhibition. We found that, in contrast with other recurrent amplifi cations, the 8p12 region included multiple centers of amplifi cation, suggesting marked genomic heterogeneity. FGFR1 -amplifi ed tumor cells were dependent on FGFR ligands in vitro and in vivo . Furthermore, ectopic expression of FGFR1 was oncogenic, which was enhanced by expression of MYC. We found that MYC was coexpressed in 40% of FGFR1 -amplifi ed tumors. Tumor cells coexpressing MYC were more sensitive to FGFR inhibition, suggesting that patients with FGFR1-amplifi ed and MYC-overexpressing tumors may benefi t from FGFR inhibitor therapy. Thus, both cell-autonomous and non-cell-autonomous mechanisms of transformation modulate FGFR dependency in FGFR1 -amplifi ed lung cancer, which may have implications for patient selection for treatment with FGFR inhibitors.
SIGNIFICANCE:Amplifi cation of FGFR1 is one of the most frequent candidate targets in lung cancer. Here, we show that multiple factors affect the tumorigenic potential of FGFR1 , thus providing clinical hypotheses for refi nement of patient selection. Cancer Discov; 4(2);
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.