This work evaluates the effect of carbon nanotube (CNT) addition to plasma-sprayed hydroxyapatite (HA) coating on its tribological behavior, biocompatibility of the coating, and cytotoxicity of CNT-containing wear debris. Biological response of the CNT-containing wear debris is critical for osteoblasts, the bone-forming cells, and macrophages, the cells that clear up wear debris from blood stream. The addition of 4 wt % CNTs to HA coating reduces the volume of wear debris generation by 80% because of the improved elastic modulus and fracture toughness. CNT reinforcement has a pronounced effect on the particle size in the wear debris and subsequent biological response. There was a slight increase in the numbers and viability of osteoblasts grown on HA-CNT compared with HA alone. The cytotoxic effect of HA and HA-CNT debris to macrophages and osteoblasts was similar, demonstrating that loose CNT does not pose a problem to these cells.
This study proposes the use of carbon nanotubes (CNTs) as reinforcement to enhance the mechanical properties of a polylactide-caprolactone copolymer (PLC) matrix. Biological interaction of PLC-CNT composites with human osteoblast cells is also investigated. Addition of 2 wt % CNT shows very uniform dispersion in the copolymer matrix, whereas 5 wt % CNT shows severe agglomeration and high porosity. PLC-2 wt % CNT composite shows an improvement in the mechanical properties with an increase in the elastic modulus by 100% and tensile strength by 160%, without any adverse effect on the ductility up to 240% elongation. An in vitro biocompatibility study on the composites shows an increase in the viability of human osteoblast cells compared to the PLC matrix, which is attributed to the combined effect of CNT content and surface roughness of the composite films.
For several decades, tremendous advances in studying skin and hair pigmentation of mammals have been made using Mendelian genetics principles. A number of loci and their associated traits have been extensively examined, crossings performed, and phenotypes well documented. Continuously improving PCR techniques allowed the molecular cloning and sequencing of the first pigmentation genes at the end of the 20th century, a period followed by an intense effort to detect and describe polymorphisms in the coding regions and correlate allelic combinations with the observed melanogenic phenotypes. However, a number of phenotypes and biological events could not be elucidated solely by analysis of the coding regions of genes. Messenger RNA isolation, characterization and quantification techniques allowed groups to move ahead and investigate molecular mechanisms whose secrets lay within the noncoding regions of pigmentation genes transcripts such as MC1R, ASIP, or Mitf. The untranslated elements contain specific nucleotidic sequences and structures that dramatically influence the mRNA half-life and processing thus impacting protein translation and melanin production. As we are progressively uncovering the complex processes regulating melanocyte biology, unraveling complete mRNA structures and understanding mechanisms beyond coding regions has become critical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.