G iven a set of flight legs to be flown by a single type of aircraft, the simultaneous aircraft routing and crew scheduling problem consists of determining a minimum-cost set of aircraft routes and crew pairings such that each flight leg is covered by one aircraft and one crew, and side constraints are satisfied. While some side constraints such as maximum flight time and maintenance requirements involve only crews or aircraft, linking constraints impose minimum connection times for crews that depend on aircraft connections. To handle these linking constraints, a solution approach based on Benders decomposition is proposed. The solution process iterates between a master problem that solves the aircraft routing problem, and a subproblem that solves the crew pairing problem. Because of their particular structure, both of these problems are solved by column generation. A heuristic branch-and-bound method is used to compute integer solutions. On a set of test instances based on data provided by an airline, the integrated approach produced significant cost savings in comparison with the sequential planning process commonly used in practice. The largest instance solved contains more than 500 flight legs over a 3-day period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.