Marine heatwaves (MHW) are becoming stronger and more frequent across the globe. MHWs affect the thermal physiology of all biological organisms, but wider ecosystem effects are particularly impactful when large habitat-forming foundation species such as kelps are affected. Many studies on impacts from MHWs on kelps have focused on temperature effects in isolation, except for a few studies that have integrated co-occurring stress from grazers, wave exposure and nutrient limitation. It is likely that many stressors act in concert with MHWs and exacerbate their effects. Here we analyzed satellite images over 60 months to assess temporal changes in abundance of surface canopies of the giant kelp Macrocystis pyrifera in the New Zealand coastal zone. The analysis encompassed the most extreme MHW on record (2017/18), across a 6° latitudinal gradient of four regions southward from the northern distributional limit of Macrocystis along mainland New Zealand. We tested the association of surface canopy cover of Macrocystis with sea surface temperature, temperature anomalies, chlorophyll-a (a proxy for nutrient availability) and water clarity (diffuse attenuation coefficient). We found a reduced cover of Macrocystis across all regions during and after the 2017/18 MHW, with least impact at the most southern region where the maximum temperatures did not exceed 18°C. There was also an important and significant interaction between temperature and water clarity, showing that temperature-induced kelp loss was greater when water clarity was poor. These results show that notable negative effects occurred across the coastal range of this foundation species and highlight the importance of studying MHW effects across latitudinal gradients and in concert with other co-occurring stressors.
Aim: Ecologists traditionally study how contemporary local processes, such as biological interactions and physical stressors, affect the distribution and abundance of organisms. By comparison, biogeographers study the distribution of the same organisms, but focus on historic, larger-scale processes that can cause mass mortalities, such as earthquakes. Here we document cascading effects of rare biogeographical (seismic) and more common ecological (temperature-related) processes on the distribution and abundances of coastal foundation species.Location: Intertidal wave-exposed rocky reefs around Kaikōura, New Zealand, dominated by large, long-lived, and iconic southern bull kelps (Durvillaea antarctica and Durvillaea willana). Methods:In November 2016, a 7.8 Mw earthquake uplifted the coastline around Kaikōura by up to 2 m, and a year later the region experienced the hottest summer on record. Extensive sampling of intertidal communities over 15 km coastline were done shortly after the earthquake and heatwaves and 4 years after the earthquake.Results: Durvillaea lost 75% of its canopy to uplift and the heatwaves reduced canopies that had survived the uplift by an additional 35%. The survey done 4 years after the earthquake showed that Durvillaea had not recovered and that the intertidal zone in many places now was dominated by small turfs and foliose seaweed. Main conclusions:Cascading impacts from seismic uplift and heatwaves have destroyed populations of Durvillaea around Kaikōura. Surviving smaller and sparser Durvillaea patches will likely compromise capacity for self-replacement and lower resilience to future stressors. These results are discussed in a global biogeographicalecological context of seismic activity and extreme heatwaves and highlight that these events, which are not particularly rare in a geological context, may have common long-lasting ecological legacies.
Marine heatwaves (MHWs) can cause dramatic changes to ecologically, culturally, and economically important coastal ecosystems. To date, MHW studies have focused on geographically isolated regions or broad-scale global oceanic analyses, without considering coastal biogeographical regions and seasons. However, to understand impacts from MHWs on diverse coastal communities, a combined biogeographical-seasonal approach is necessary, because (1) bioregions reflect community-wide temperature tolerances and (2) summer or winter heatwaves likely affect communities differently. We therefore carried out season-specific Theil–Sen robust linear regressions and Pettitt change point analyses from 1982 to 2021 on the number of events, number of MHW days, mean intensity, maximum intensity, and cumulative intensity of MHWs, for each of the world’s 12 major coastal biogeographical realms. We found that 70% of 240 trend analyses increased significantly, 5% decreased and 25% were unaffected. There were clear differences between trends in metrics within biogeographical regions, and among seasons. For the significant increases, most change points occurred between 1998 and 2006. Regression slopes were generally positive across MHW metrics, seasons, and biogeographical realms as well as being highest after change point detection. Trends were highest for the Arctic, Northern Pacific, and Northern Atlantic realms in summer, and lowest for the Southern Ocean and several equatorial realms in other seasons. Our analysis highlights that future case studies should incorporate break point changes and seasonality in MHW analysis, to increase our understanding of how future, more frequent, and stronger MHWs will affect coastal ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.