The cell wall of the oomycete plant pathogen Phytophthora parasitica var. nicotianae contains a protein called CBEL that shows cellulose-binding (CB), elicitor (E) of defense in plants and lectin-like (L) activities. The biological role of this molecule in Phytophthora was investigated by generating transgenic strains suppressed in CBEL expression. Phenotypic characterization of these strains showed that they were severely impaired in adhesion to a cellophane membrane, differentiation of lobed structures in contact with cellophane, and formation of branched aggregating hyphae on cellophane and on flax cellulose fibres. Infection assays revealed that the strains suppressed in CBELexpression were not greatly affected in pathogenicity and formed branched aggregating hyphae in contact with the roots of the host plant, thereby indicating that CBEL is involved in the perception of cellulose rather than in the morphogenesis of hyphal aggregates. Interestingly, the absence of CBEL was correlated with abnormal formation of papillae-like cell wall thickenings in vitro, suggesting that CBEL is involved in cell wall deposition in Phytophthora. Reverse genetics in oomycetes has long been hampered by their diploid nature and difficulties in transformation and regeneration. The gene inactivation approach reported in this work provides the first direct evidence for intrinsic functions of an elicitor and cell wall protein in oomycetes.
The opportunistic pathogen Aspergillus fumigatus is the most frequent cause of deadly airborne fungal infections in developed countries. In order to identify novel antifungal-drug targets, we investigated the genome of A. fumigatus for genes that are necessary for efficient fungal growth. An artificial A. fumigatus diploid strain with one copy of an engineered impala160 transposon from Fusarium oxysporum integrated into its genome was used to generate a library of diploid strains by random in vivo transposon mutagenesis. Among 2,386 heterozygous diploid strains screened by parasexual genetics, 1.2% had a copy of the transposable element integrated into a locus essential for A. fumigatus growth. Comparison of genomic sequences flanking impala160 in these mutants with that of the genome of A. fumigatus allowed the characterization of 20 previously uncharacterized A. fumigatus genes. Among these, homologues of genes essential for Saccharomyces cerevisiae growth have been identified, as well as genes that do not have homologues in other fungal species. These results confirm that heterologous transposition using the transposable element impala is a powerful tool for functional genomics in ascomycota, and they pave the way for defining the complete set of essential genes in A. fumigatus, the first step toward target-based development of new antifungal drugs.
impala, a Tc1-mariner transposable element from Fusarium oxysporum, was introduced into the rice blast fungus Magnaporthe grisea to develop transposon-based insertional mutagenesis. A construct (pNIL160) containing an autonomous impala copy inserted in the promoter of niaD encoding Aspergillus nidulans nitrate reductase was introduced by transformation into a M. grisea nitrate reductase-deficient mutant. impala excision was monitored by restoration of prototrophy for nitrate. Southern analysis of niaD+ revertants revealed that impala was able to excise and reinsert at new loci in M. grisea. As observed for its host Fusarium oxysporum, impala inserted at a TA site left a typical excision footprint of 5 bp. We have shown that a defective impala copy was inactive in M. grisea, yet it can be activated by a functional impala transposase. A transformant carrying a single copy of pNIL160 was used to generate a collection of 350 revertants. Mutants either altered for their mycelial growth (Rev2) or nonpathogenic (Rev77) were obtained. Complementation of Rev77 with a 3-kb genomic fragment from a wild-type locus was successful, demonstrating the tagging of a pathogenicity gene by impala. This gene, called ORP1, is essential for penetration of host leaves by M. grisea and has no sequence homology to known genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.