Phosphate-limited synthetic culture media were designed to investigate the growth and the pristinamycin production of ' Streptomyces pristinaespiralis ' using different nitrogen sources. During balanced growth, either mineral or organic nitrogen sources were readily utilized. However, glutamate and alanine were used as both nitrogen and carbon source, sparing the utilization of the primary carbon source, glucose. Valine was utilized only for its nitrogen and consequently 2-ketoisovalerate was excreted in the medium. Ammonium prevented the utilization of nitrate. Upon phosphate limitation, glycerol, originating from the breakdown of teichoic acids, was released, allowing the recovery of phosphate from the cell wall and the continuation of growth. Under such conditions, ammonium was excreted following the consumption of glutamate and alanine and was later reassimilated after exhaustion of the primary nitrogen source. The mode of utilization of valine prevented the production of pristinamycins due to excretion of 2-ketoisovalerate, one of their direct precursors. For other nitrogen sources, pristinamycin production was controlled by nitrogen catabolic regulation linked to the residual level of ammonium. In the case of nitrate, the negative regulation was alleviated by the absence of ammonium and production then occurred precociously. In the case of amino acids and ammonium, production was delayed until after exhaustion of amino acids and depletion of ammonium.
Humankind is facing a climate and energy crisis which demands global and prompt actions to minimize the negative impacts on the environment and on the lives of millions of people. Among all the disciplines which have an important role to play, chemistry has a chance to rethink the way molecules are made and find innovations to decrease the overall anthropic footprint on the environment. In this paper, we will provide a review of the existing knowledge but also recent advances on the manufacturing and end uses of acrylamide-based polymers following the “green chemistry” concept and 100 years after the revolutionary publication of Staudinger on macromolecules. After a review of raw material sourcing options (fossil derivatives vs. biobased), we will discuss the improvements in monomer manufacturing followed by a second part dealing with polymer manufacturing processes and the paths followed to reduce energy consumption and CO2 emissions. In the following section, we will see how the polyacrylamides help reduce the environmental footprint of end users in various fields such as agriculture or wastewater treatment and discuss in more detail the fate of these molecules in the environment by looking at the existing literature, the regulations in place and the procedures used to assess the overall biodegradability. In the last section, we will review macromolecular engineering principles which could help enhance the degradability of said polymers when they reach the end of their life cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.