Adipose tissue dysfunction is critical to the development of type II diabetes and other metabolic diseases. While monolayer cell culture has been useful for studying fat biology, 2D culture often does not reflect the complexity of fat tissue. Animal models are also problematic in that they are expensive, time consuming, and may not completely recapitulate human biology because of species variation. To address these problems, we have developed a scaffold-free method to generate 3D adipose spheroids from primary or immortal human or mouse pre-adipocytes. Pre-adipocytes self-organize into spheroids in hanging drops and upon transfer to low attachment plates, can be maintained in long-term cultures. Upon exposure to differentiation cues, the cells mature into adipocytes, accumulating large lipid droplets that expand with time. The 3D spheroids express and secrete higher levels of adiponectin compared to 2D culture and respond to stress, either culture-related or toxin-associated, by secreting pro-inflammatory adipokines. In addition, 3D spheroids derived from brown adipose tissue (BAT) retain expression of BAT markers better than 2D cultures derived from the same tissue. Thus, this model can be used to study both the maturation of pre-adipocytes or the function of mature adipocytes in a 3D culture environment.
SummaryDyskeratosis congenita (DC), an inherited bone marrow failure syndrome, is caused by defects in telomerase. Somatic cells from DC patients have shortened telomeres and clinical symptoms are most pronounced in organs with a high cell turnover, including those involved in hematopoiesis and skin function. We previously identified an autosomal dominant (AD) form of DC that is caused by mutations in the telomerase RNA component (TER). In this study, we evaluated whether retroviral expression of TER and/or telomerase reverse transcriptase (TERT), the catalytic component of telomerase, could extend telomere length and rescue AD DC cells from a phenotype characteristic of early senescence. Exogenous TER expression, without TERT, could not activate telomerase in AD DC skin fibroblasts. Transduction of TERT alone, however, provided AD DC cells with sufficient telomerase activity to extend average telomere length and proliferative capacity. Interestingly, we found that expression of TER and TERT together resulted in extension of lifespan and higher levels of telomerase and longer telomeres than expression of TERT alone in both AD DC and normal cells. Our results provide evidence that AD DC cells can be rescued from defects in telomere maintenance and proliferation, and that coexpression of TERT and TER together provides a more efficient means to elongate telomeres than expression of TERT alone. Similar strategies may be useful for ameliorating the detrimental effects of telomere shortening in AD DC and other diseases associated with telomerase or telomere defects.
Obesity is a risk factor for breast cancer and also predicts poor clinical outcomes regardless of menopausal status. Contributing to the poor clinical outcomes is the suboptimal efficacy of standard therapies due to dose limiting toxicities and obesity related complications, highlighting the need to develop novel therapeutic approaches for treating obese patients. We recently found that obesity leads to an increase in tumor-infiltrating macrophages with activated NLRC4 inflammasome and increased interleukin (IL)-1β production. IL-1β, in turn, leads to increased angiogenesis and cancer progression. Using Next Generation RNA sequencing, we identified an NLRC4/IL-1β-dependent upregulation of angiopoietin-like 4 (ANGPTL4), a known angiogenic factor in cancer, in tumors from obese mice. ANGPTL4-deficiency by genetic knockout or treatment with a neutralizing antibody led to a significant reduction in obesity-induced angiogenesis and tumor growth. At a mechanistic level, ANGPTL4 expression is induced by IL-1β from primary adipocytes in a manner dependent on NF-κB- and MAP kinase-activation, which is further enhanced by hypoxia. This report shows that adipocyte-derived ANGPTL4 drives disease progression under obese conditions and is a potential therapeutic target for treating obese breast cancer patients.
Emerging evidence indicates that persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs), are involved in the development of diabetes. Dysfunctional adipocytes play a significant role in initiating insulin resistance. Preadipocytes make up a large portion of adipose tissue and are necessary for the generation of functional mature adipocytes through adipogenesis. PCB126 is a dioxin-like PCB and a potent aryl hydrocarbon receptor (AhR) agonist. We hypothesized that PCB126 may be involved in the development of diabetes through disruption of adipogenesis. Using a newly developed human preadipocyte cell line called NPAD (Normal PreADipocytes), we found that exposure of preadipocytes to PCB126 resulted in significant reduction in their subsequent ability to fully differentiate into adipocytes, more so than when the cells were exposed to PCB126 during differentiation. Reduction in differentiation by PCB126 was associated with downregulation of transcript levels of a key adipocyte transcription factor, PPARγ, and late adipocyte differentiation genes. An AhR antagonist, CH223191, blocked this effect. These studies indicate that preadipocytes are particularly sensitive to the effects of PCB126 and suggest that AhR activation inhibits PPARγ transcription and subsequent adipogenesis. Our results validate the NPAD cell line as a useful model for studying the effects of POPs on adipogenesis.
Mechanisms of neuroendocrine tumor (NET) proliferation are poorly understood and therapies that effectively control NET progression and metastatic disease are limited. We found amplification of a putative oncogene, RABL6A, in primary human pancreatic NETs(PNETs) that correlated with high level RABL6A protein expression. Consistent with those results, stable silencing of RABL6A in cultured BON-1 PNET cells revealed that it is essential for their proliferation and survival. Cells lacking RABL6A predominantly arrested in G1 phase with a moderate mitotic block. Pathway analysis of microarray data suggested activation of the p53 and retinoblastoma (Rb1) tumor suppressor pathways in the arrested cells. Loss of p53 had no effect on the RABL6A knockdown phenotype, indicating RABL6A functions independent of p53 in this setting. By comparison, Rb1 inactivation partially restored G1 to S phase progression in RABL6A knockdown cells although it was insufficient to override the mitotic arrest and cell death caused by RABL6A loss. Thus, RABL6A promotes G1 progression in PNET cells by inactivating Rb1, an established suppressor of PNET proliferation and development. This work identifies RABL6A as a novel negative regulator of Rb1 that is essential for PNET proliferation and survival. We suggest RABL6A is a new potential biomarker and target for anticancer therapy in PNET patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.