PHD2 serves as an oxygen sensor that rescues blood supply by regulating vessel formation and shape in case of oxygen shortage1–5. However, it is unknown whether PHD2 can influence arteriogenesis. Here we studied the role of PHD2 in collateral artery growth by using hindlimb ischaemia as a model, a process that compensates for the lack of blood flow in case of major arterial occlusion6–8. We show that Phd2 (also known as Egln1) haplodeficient (Phd2+/−) mice displayed preformed collateral arteries that preserved limb perfusion and prevented tissue necrosis in ischaemia. Improved arteriogenesis in Phd2+/− mice was due to an expansion of tissue-resident, M2-like macrophages9,10 and their increased release of arteriogenic factors, leading to enhanced smooth muscle cell (SMC) recruitment and growth. Both chronic and acute deletion of one Phd2 allele in macrophages was sufficient to skew their polarization towards a proarteriogenic phenotype. Mechanistically, collateral vessel preconditioning relied on the activation of canonical NF-κB pathway in Phd2+/− macrophages. These results unravel how PHD2 regulates arteriogenesis and artery homeostasis by controlling a specific differentiation state in macrophages and suggest new treatment options for ischaemic disorders.
Objectives
In zebrafish embryos, sprouts from the axial vein have lymphangiogenic potential, as they give rise to the first lymphatics. Here, we studied whether Notch signaling, which regulates cell fate decisions and vessel morphogenesis, controls lymphatic development.
Methods and results
Knockdown of Dll4 or its receptors Notch-1b or Notch-6 in zebrafish impaired lymphangiogenesis. Dll4/Notch silencing reduced the number of sprouts giving rise to the string of parchordal lymphangioblasts; instead, sprouts connecting to the intersomitic vessels were formed. At a later phase, Notch silencing impaired navigation of lymphatic intersomitic vessels along their arterial templates.
Conclusion
These studies imply critical roles for Notch signaling in the formation and wiring of the lymphatic network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.