The International Compression Club (ICC) is a partnership between academics, clinicians and industry focused upon understanding the role of compression in the management of different clinical conditions. The ICC meet regularly and from these meetings have produced a series of eight consensus publications upon topics ranging from evidence-based compression to compression trials for arm lymphoedema. All of the current consensus documents can be accessed on the ICC website (http://www.icc-compressionclub.com/index.php). In May 2011, the ICC met in Brussels during the European Wound Management Association (EWMA) annual conference. With almost 50 members in attendance, the day-long ICC meeting challenged a series of dogmas and myths that exist when considering compression therapies. In preparation for a discussion on beliefs surrounding compression, a forum was established on the ICC website where presenters were able to display a summary of their thoughts upon each dogma to be discussed during the meeting. Members of the ICC could then provide comments on each topic thereby widening the discussion to the entire membership of the ICC rather than simply those who were attending the EWMA conference. This article presents an extended report of the issues that were discussed, with each dogma covered in a separate section. The ICC discussed 12 'dogmas' with areas 1 through 7 dedicated to materials and application techniques used to apply compression with the remaining topics (8 through 12) related to the indications for using compression.
We investigate experimentally and numerically the filling of a collapsible tube, motivated by venous hemodynamics in the lower limbs. The experiments are performed by filling an initially collapsed flexible tube, applying pressure through a hydraulic circuit. The tube law and the tube tension have been previously measured. The tube shape, the flow rate and the pressure at the two ends of the tube are measured continuously. The filling occurs in three stages: a rapid equilibration of the pressure near the tube entry with atmospheric pressure, a quasi-steady filling of the tube with a linearly rising pressure, and a final stage of tube inflation. Our numerical model is the classical one-dimensional collapsible tube equations. Excellent quantitative agreement is found between computations and experimental data. We show experimentally observed shapes near the tube end that indicate possible three-dimensional effects; however these effects do not impair significantly the ability of the one-dimensional model to describe the experiment. Travelling waves of large amplitude are observed in the simulations and the experiments.
The venous return simulator computes lower limb hemodynamic parameters under static conditions. The good correlation existing between the VRS and the data obtained in a previous clinical study shows that this numerical approach could provide a useful means of predicting the hemodynamic consequences of compression therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.