Previous observations suggest the existence of 'Active sleep' in cephalopods. To investigate in detail the behavioral structure of cephalopod sleep, we video-recorded four adult specimens of Octopus insularis and quantified their distinct states and transitions. Changes in skin color and texture and movements of eyes and mantle were assessed using automated image processing tools, and arousal threshold was measured using sensory stimulation. Two distinct states unresponsive to stimulation occurred in tandem. The first was a 'Quiet sleep' state with uniformly pale skin, closed pupils, and long episode durations (median 415.2 s). The second was an 'Active sleep' state with dynamic skin patterns of color and texture, rapid eye movements, and short episode durations (median 40.8 s). 'Active sleep' was periodic (60% of recurrences between 26 and 39 min) and occurred mostly after 'Quiet sleep' (82% of transitions). These results suggest that cephalopods have an ultradian sleep cycle analogous to that of amniotes.
The uplift of the Isthmus of Panama (IP) created a land bridge between Central and South America and caused the separation of the Western Atlantic and Eastern Pacific oceans, resulting in profound changes in the environmental and oceanographic conditions. To evaluate how these changes have influenced speciation processes in octopods, fragments of two mitochondrial (Cytochrome oxidase subunit I, COI and 16S rDNA) and two nuclear (Rhodopsin and Elongation Factor-1α, EF-1α) genes were amplified from samples from the Atlantic and Pacific oceans. One biogeographical and four fossil calibration priors were used within a relaxed Bayesian phylogenetic analysis framework to estimate divergence times among cladogenic events. Reconstruction of the ancestral states in phylogenies was used to infer historical biogeography of the lineages and species dispersal routes. The results revealed three well-supported clades of transisthmian octopus sister species pair/complex (TSSP/TSSC) and two additional clades showing a low probability of species diversification, having been influenced by the IP. Divergence times estimated in the present study revealed that octopod TSSP/TSSC from the Atlantic and Pacific diverged between the Middle Miocene and Early Pliocene (mean range = 5–18 Ma). Given that oceanographic changes caused by the uplift of the IP were so strong as to affect the global climate, we suggest that octopod TSSP/TSSC diverged because of these physical and environmental barriers, even before the complete uplift of the IP 3 Ma, proposed by the Late Pliocene model. The results obtained in this phylogenetic reconstruction also indicate that the octopus species pairs in each ocean share a recent common ancestor from the Pacific Ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.