Testicular spermatozoa acquire fertility only after 1 or 2 weeks of transit through the epididymis. At the end of this several meters long epididymal tubule, the male gamete is able to move, capacitate, migrate through the female tract, bind to the egg membrane and fuse to the oocyte to result in a viable embryo. All these sperm properties are acquired after sequential modifications occurring either at the level of the spermatozoon or in the epididymal surroundings. Over the last few decades, significant increases in the understanding of the composition of the male gamete and its surroundings have resulted from the use of new techniques such as genome sequencing, proteomics combined with high-sensitivity mass spectrometry, and gene-knockout approaches. This review reports and discusses the most relevant new results obtained in different species regarding the various cellular processes occurring at the sperm level, in particular, those related to the development of motility and egg binding during epididymal transit.
The final stages of sperm differentiation occur outside the gonad and are not under the genomic control of germ cells. Only sequential interactions with the medium surrounding the sperm are believed to induce the final steps of spermatogenesis. The epididymis, a long tubule with very active secretory and reabsorption functions, is able to create sequential changes in the composition of luminal fluid throughout its length. The chronologies of the changes, which occur on/in the sperm with those in their surrounding environment, are described. Correlations between the highly regionalized epididymal activities and sperm characteristics linked to their survival and fertility potential are presented in this review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.