The increase in intracellular Ca2+ concentration in erythrocytes and platelets results in simultaneous phospholipid scrambling and microvesicle shedding. Microvesicle formation involves membrane fusion events which were proposed either to be tightly linked to phospholipid transversal redistribution or to occur by a separate mechanism. We report here that in erythrocytes incubated in high K+ medium, or in resealed ghosts, phospholipid scrambling can be fully induced by intracellular Ca2+ without microvesicle formation. Furthermore, in ghosts resealed in the presence of spermine, intracellular Ca2+, at low concentration, was able to induce microvesicles, whereas scrambling was drastically inhibited. Surprisingly, in spermine-containing ghosts prepared from erythrocytes of a patient with a bleeding disorder, due to a lack of Ca2+-induced phospholipid scrambling and vesicle shedding (characterized as a Scott syndrome), Ca2+ also promoted microvesicle release. Data show that phospholipid scrambling and microvesicle production, although closely regulated, proceed by independent pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.