X-linked adrenal hypoplasia congenita is a developmental disorder of the human adrenal gland that results in profound hormonal deficiencies and is lethal if untreated. We have isolated the gene responsible for the disease, DAX-1, which is deleted or mutated in X-linked adrenal hypoplasia patients. DAX-1 encodes a new member of the nuclear hormone receptor superfamily displaying a novel DNA-binding domain. The DAX-1 product acts as a dominant negative regulator of transcription mediated by the retinoic acid receptor.
Adrenal hypoplasia congenita (AHC) is an X-linked disorder characterized by primary adrenal insufficiency. Hypogonadotropic hypogonadism (HHG) is frequently associated with this disorder but is thought not to be caused by the low adrenal androgen levels due to adrenal hypoplasia. It is uncertain whether there are two distinct yet physically linked genes responsible for AHC and HHG or a single gene responsible for both diseases. AHC can occur as a part of a contiguous deletion syndrome together with Duchenne muscular dystrophy (DMD) and/or glycerol kinase deficiency (GKD). From the analysis of deletions, the following gene order has been deduced: Xpter-AHC-GKD-DMD-cen. An AHC critical region of 200-500 kilobases has been defined by physical mapping and partially overlaps with a 160-kilobase dosage-sensitive sex (DSS) reversal critical region. The DAX-1 (DSS-AHC critical region on the X, gene 1) gene was isolated and found to encode a new member of the nuclear hormone receptor family. Here we report that DAX-1 is deleted in 14 patients and point mutations were found in the coding region in DNA from 12 unrelated individuals. All AHC patients over 14 years old and with only point mutations in DAX-1 were also diagnosed with HHG, confirming that the DAX-1 gene is responsible for both X-linked AHC and HHG. But in four sporadic cases and a single familial case, no point mutations were found, suggesting genetic heterogeneity or differential expression of DAX-1.
Complex multicellular organisms, such as mammals, express two complete sets of chromosomes per nucleus, combining the genetic material of both parents. However, epigenetic studies have demonstrated violations to this rule that are necessary for mammalian physiology; the most notable parental allele expression phenomenon is genomic imprinting. With the identification of endogenous imprinted genes, genomic imprinting became well-established as an epigenetic mechanism in which the expression pattern of a parental allele influences phenotypic expression. The expanding study of genomic imprinting is revealing a significant impact on brain functions and associated diseases. Here, we review key milestones in the field of imprinting and discuss mechanisms and systems in which imprinted genes exert a significant role.
Prader-Willi syndrome (PWS) is a complex neurogenetic disorder with considerable clinical variability that is thought in large part to be the result of a hypothalamic defect. PWS results from the absence of paternal expression of imprinted genes localized in the 15q11-q13 region; however, none of the characterized genes has so far been shown to be involved in the etiology of PWS. Here, we provide a detailed investigation of a mouse model deficient for NECDIN: Linked to the mutation, a neonatal lethality of variable penetrance is observed. Viable NECDIN: mutants show a reduction in both oxytocin-producing and luteinizing hormone-releasing hormone (LHRH)-producing neurons in hypothalamus. This represents the first evidence of a hypothalamic deficiency in a mouse model of PWS. NECDIN:-deficient mice also display increased skin scraping activity in the open field test and improved spatial learning and memory in the Morris water maze. The latter features are reminiscent of the skin picking and improved spatial memory that are characteristics of the PWS phenotype. These striking parallels in hypothalamic structure, emotional and cognitive-related behaviors strongly suggest that NECDIN is responsible for at least a subset of the multiple clinical manifestations of PWS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.