-STICS (Simulateur mulTJdiscplinaire pour les Cultures Standard) is a crop model constructed as a simulation tool capable of working under agricultural conditions. Outputs comprise the production (amount and quality) and the environment. Inputs take into account the climate, the soi1 and the cropping system. STICS is presented as a model exhibiting the following qualities: robustness, an easy access to inputs and an uncomplicated f~~t u r e evolution thanks to a modular (easy adaptation to various types of plant) nature and generic. However, STICS is not an entirely new model since most parts use classic formalisms or stem from existing models. The main simulated processes are the growth, the development of the crop and the water and nitrogenous balance of the soil-crop system. The seven modules of STICSdevelopment, shoot growth, yield components, root growth, water balance, thermal environment and nitrogen balanceare presented in tum with a discussion about the theoretical choices in comparison to other models. These choices should render the model capable of exhibiting the announced qualities in classic environmental contexts. However, because some processes (e.g. ammoniac volatilization, clrought resistance, etc.) are not taken into account, the use of STICS is presently limited to several cropping systems. (
Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We evaluated 13 rice models against multi-year experimental yield data at four sites with diverse climatic conditions in Asia and examined whether different modeling approaches on major physiological processes attribute to the uncertainties of prediction to field measured yields and to the uncertainties of sensitivity to changes in temperature and CO 2 concentration [CO 2 ]. We also examined whether a use of an ensemble of crop models can reduce the uncertainties. Individual models did not consistently reproduce both experimental and regional yields well, and uncertainty was larger at the warmest and coolest sites. The variation in yield projections was larger among crop models than variation resulting from 16 global climate model-based scenarios. However, the mean of predictions of all crop models reproduced experimental data, with an uncertainty of less than 10% of measured yields. Using an ensemble of eight models calibrated only for phenology or five models calibrated in detail resulted in the uncertainty equivalent to that of the measured yield in well-controlled agronomic field experiments. Sensitivity analysis indicates the necessity to improve the accuracy in predicting both biomass and harvest index in response to increasing [CO 2 ] and temperature.
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.Distributed under a Creative Commons Attribution -NonCommercial -NoDerivatives| 4.0
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.