Genome-wide pervasive transcription has been reported in many eukaryotic organisms, revealing a highly interleaved transcriptome organization that involves hundreds of previously unknown non-coding RNAs. These recently identified transcripts either exist stably in cells (stable unannotated transcripts, SUTs) or are rapidly degraded by the RNA surveillance pathway (cryptic unstable transcripts, CUTs). One characteristic of pervasive transcription is the extensive overlap of SUTs and CUTs with previously annotated features, which prompts questions regarding how these transcripts are generated, and whether they exert function. Single-gene studies have shown that transcription of SUTs and CUTs can be functional, through mechanisms involving the generated RNAs or their generation itself. So far, a complete transcriptome architecture including SUTs and CUTs has not been described in any organism. Knowledge about the position and genome-wide arrangement of these transcripts will be instrumental in understanding their function. Here we provide a comprehensive analysis of these transcripts in the context of multiple conditions, a mutant of the exosome machinery and different strain backgrounds of Saccharomyces cerevisiae. We show that both SUTs and CUTs display distinct patterns of distribution at specific locations. Most of the newly identified transcripts initiate from nucleosome-free regions (NFRs) associated with the promoters of other transcripts (mostly protein-coding genes), or from NFRs at the 3' ends of protein-coding genes. Likewise, about half of all coding transcripts initiate from NFRs associated with promoters of other transcripts. These data change our view of how a genome is transcribed, indicating that bidirectionality is an inherent feature of promoters. Such an arrangement of divergent and overlapping transcripts may provide a mechanism for local spreading of regulatory signals-that is, coupling the transcriptional regulation of neighbouring genes by means of transcriptional interference or histone modification
Vertebrate TAP and its yeast ortholog Mex67p are involved in the export of messenger RNAs from the nucleus. TAP has also been implicated in the export of simian type D viral RNAs bearing the constitutive transport element (CTE). Although TAP directly interacts with CTE-bearing RNAs, the mode of interaction of TAP/Mex67p with cellular mRNAs is different from that with the CTE RNA and is likely to be mediated by protein-protein interactions. Here we show that Mex67p directly interacts with Yra1p, an essential yeast hnRNP-like protein. This interaction is evolutionarily conserved as Yra1p also interacts with TAP. Conditional expression in yeast cells implicates Yra1 p in the export of cellular mRNAs. Database searches revealed that Yra1p belongs to an evolutionarily conserved family of hnRNP-like proteins having more than one member in Mus musculus, Xenopus laevis, Caenorhabditis elegans, and Schizosaccharomyces pombe and at least one member in several species including plants. The murine members of the family directly interact with TAP. Because members of this protein family are characterized by the presence of one RNP-motif RNA-binding domain and exhibit RNA-binding activity, we called these proteins REF-bps for RNA and export factor binding proteins. Thus, Yra1p and members of the REF family of hnRNP-like proteins may facilitate the interaction of TAP/Mex67p with cellular mRNAs.
Genome-wide studies in S. cerevisiae reveal that the transcriptome includes numerous antisense RNAs as well as intergenic transcripts regulated by the exosome component Rrp6. We observed that upon the loss of Rrp6 function, two PHO84 antisense transcripts are stabilized, and PHO84 gene transcription is repressed. Interestingly, the same phenotype is observed in wild-type cells during chronological aging. Epistasis and chromatin immunoprecipitation experiments indicate that the loss of Rrp6 function is paralleled by the recruitment of Hda1 histone deacetylase to PHO84 and neighboring genes. However, histone deacetylation is restricted to PHO84, suggesting that Hda1 activity depends on antisense RNA. Accordingly, the knockdown of antisense production prevents PHO84 gene repression, even in the absence of Rrp6. Together, our data indicate that the stabilization of antisense transcripts results in PHO84 gene repression via a mechanism distinct from transcription interference and that the modulation of Rrp6 function contributes to gene regulation by inducing RNA-dependent epigenetic modifications.
We conclude that Crm1p interacts with the Rev NES and nuclear pore proteins during delivery of cargo to the nuclear pore complex. Our findings also agree well with current experiments on Crm1p orthologs in Schizosaccharomyces pombe and in vertebrate systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.