The colonization of airways by filamentous fungi and the development of respiratory infections require some predisposing factors as encountered in patients with cystic fibrosis (CF). Indeed, the defective mucociliary clearance which characterizes the disease is associated with local immunological disorders. In addition, the prolonged therapy with antibiotics and the use of corticosteroid treatments also facilitate fungal growth. An important fungal biota has been described in respiratory secretions of patients suffering from CF. Aspergillus fumigatus, Scedosporium apiospermum and Aspergillus terreus for filamentous fungi and Candida albicans for yeasts are the main fungal species associated with CF. Although less common, several fungal species including Aspergillus flavus and Aspergillus nidulans may be isolated transiently from CF respiratory secretions, while others such as Exophiala dermatitidis and Scedosporium prolificans may chronically colonize the airways. Moreover, some of them like Penicillium emersonii and Acrophialophora fusispora are encountered in humans almost exclusively in the context of CF. As fungal complications in CF patients are essentially caused by filamentous fungi the present review will not include works related to yeasts. In CF patients, fungi may sometimes be responsible for deterioration of lung function, as occurs in allergic broncho-pulmonary aspergillosis (ABPA) which is the most common fungal disease in this context. Additionally, although the clinical relevance of the fungal airway colonization is still a matter of debate, filamentous fungi may contribute to the local inflammatory response, and therefore to the progressive deterioration of the lung function.
BackgroundAspergillus fumigatus is the most common agent of invasive aspergillosis, a feared complication in severely immunocompromised patients. Despite the recent commercialisation of new antifungal drugs, the prognosis for this infection remains uncertain. Thus, there is a real need to discover new targets for therapy. Particular attention has been paid to the biochemical composition and organisation of the fungal cell wall, because it mediates the host-fungus interplay. Conidia, which are responsible for infections, have melanin as one of the cell wall components. Melanin has been established as an important virulence factor, protecting the fungus against the host's immune defences. We suggested that it might also have an indirect role in virulence, because it is required for correct assembly of the cell wall layers of the conidia.ResultsWe used three A. fumigatus isolates which grew as white or brown powdery colonies, to demonstrate the role of melanin. Firstly, sequencing the genes responsible for biosynthesis of melanin (ALB1, AYG1, ARP1, ARP2, ABR1 and ABR2) showed point mutations (missense mutation, deletion or insertion) in the ALB1 gene for pigmentless isolates or in ARP2 for the brownish isolate. The isolates were then shown by scanning electron microscopy to produce numerous, typical conidial heads, except that the conidia were smooth-walled, as previously observed for laboratory mutants with mutations in the PKSP/ALB1 gene. Flow cytometry showed an increase in the fibronectin binding capacity of conidia from mutant isolates, together with a marked decrease in the binding of laminin to the conidial surface. A marked decrease in the electronegative charge of the conidia and cell surface hydrophobicity was also seen by microelectrophoresis and two-phase partitioning, respectively. Ultrastructural studies of mutant isolates detected considerable changes in the organisation of the conidial wall, with the loss of the outermost electron dense layer responsible for the ornamentations seen on the conidial surface in wild-type strains. Finally, analysis of the conidial surface of mutant isolates by atomic force microscopy demonstrated the absence of the outer cell wall rodlet layer which is composed of hydrophobins.ConclusionThese results suggest that, in addition to a protective role against the host's immune defences, melanin is also a structural component of the conidial wall that is required for correct assembly of the cell wall layers and the expression at the conidial surface of adhesins and other virulence factors.
Fusarium spp. have recently emerged as significant human pathogens. Identification of these species is important, both for epidemiological purposes and for patient management, but conventional identification based on morphological traits is hindered by major phenotypic polymorphism. In this study, 62 strains, or isolates, belonging to nine Fusarium species were subjected to both molecular identification TEF1 gene sequencing and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) analysis. Following stringent standardization, the proteomic-based method appeared to be both reproducible and robust. Mass spectral analysis by comparison with a database, built in this study, of the most frequently isolated species, including Fusarium solani, Fusarium oxysporum, Fusarium verticilloides, Fusarium proliferatum and Fusarium dimerum, correctly identified 57 strains. As expected, the four species (i.e. Fusarium chlamydosporum, Fusarium equiseti, Fusarium polyphialidicum, Fusarium sacchari) not represented in the database were not identified. Results from mass spectrometry and molecular identification agreed in five of the six cases in which results from morphological and molecular identification were not in agreement. MALDI-TOF yielded results within 1 h, making it a valuable tool for identifying clinical Fusarium isolates at the species level. Uncommon species must now be added to the database. MALDI-TOF may also prove useful for identifying other clinically important moulds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.