Fractures of polymer material are one of the most frequent reasons for the repair of removable dental prostheses. Therefore, there is a constant endeavor to strengthen them, and polymer materials with high resistance to fracture are being developed. The aim of this study was to determine the flexural strength of polymer materials and their reinforcements and thus give preference to their clinical use. Specimens with dimensions 18 x 10 x 3 mm were tested after polymerization, immersion in water at a temperature 37 degrees C for 28 days, and thermocycling by using the "short-beam" method to determine the flexural strength. Microscopic examination was performed to determine the quality of bonding between the glass fibers and matrix. Common polymer materials (control group) demonstrated the lowest flexural strength, although, when reinforced with fibers they showed higher flexural strength, matching that of the tested high-impact strength resin. Thermocycled specimens had the highest flexural strength, whereas there was no difference (p > 0.05) between specimens tested after polymerization and immersion in water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.