To understand further the role of the dynamic interplay between keratinocytes and stromal components in the regulation of the growth, differentiation, morphogenesis, and basement membrane assembly of human stratified squamous epithelium, we have generated novel, three-dimensional organotypic cultures in which skin keratinocytes were grown in the absence or presence of pre-existing basement membrane components and/or dermal fibroblasts. We found that keratinocytes cultured in the presence of pre-existing basement membrane components and dermal fibroblasts for 9 d showed rapid assembly of basement membrane, as seen by a nearly complete lamina densa, hemidesmosomes, and the polarized, linear distribution of laminin 5 and a6 integrin subunit. Basement membrane assembly was somewhat delayed in the absence of dermal fibroblasts, but did occur at discrete nucleation sites when pre-existing basement membrane components were present. No basement membrane developed in the absence of pre-existing basement membrane components, even in the presence of dermal fibroblasts. Bromodeoxyuridine incorporation studies showed that early keratinocyte growth was independent of mesenchymal support, but by 14 d, both fibroblasts and assembled basement membrane were required to sustain growth. Normalization of keratinocyte differentiation was independent of both dermal fibroblasts and structured basement membrane. These results indicated that epithelial and mesenchymal components play a coordinated role in the generation of structured basement membrane and in the regulation of normalized epithelial growth and tissue architecture in an in vitro model of human skin.
Epithelial-mesenchymal interactions promote the morphogenesis and homeostasis of human skin. However, the role of the basement membrane (BM) during this process is not well-understood. To directly study how BM proteins influence epidermal differentiation, survival and growth, we developed novel 3D human skin equivalents (HSEs). These tissues were generated by growing keratinocytes at an air-liquid interface on polycarbonate membranes coated with individual matrix proteins (Type I Collagen, Type IV Collagen or fibronectin) that were placed on contracted Type I Collagen gels populated with dermal fibroblasts. We found that only keratinocytes grown on membranes coated with the BM protein Type IV Collagen showed optimal tissue architecture that was similar to control tissues grown on de-epidermalized dermis (AlloDerm) that contained intact BM. In contrast, tissues grown on proteins not found in BM, such as fibronectin and Type I Collagen, demonstrated aberrant tissue architecture that was linked to a significant elevation in apoptosis and lower levels of proliferation of basal keratinocytes. While all tissues demonstrated a normalized, linear pattern of deposition of laminin 5, tissues grown on Type IV Collagen showed elevated expression of α6 integrin, Type IV Collagen and Type VII Collagen, suggesting induction of BM organization. Keratinocyte differentiation (Keratin 1 and filaggrin) was not dependent on the presence of BM proteins. Thus, Type IV Collagen acts as a critical microenvironmental factor in the BM that is needed to sustain keratinocyte growth and survival and to optimize epithelial architecture.
We have developed novel 3-dimensional in vitro and in vivo tissue models that mimic premalignant disease of human stratified epithelium in order to analyze the stromal contribution of extracellular matrix and basement membrane proteins to the progression of intraepithelial neoplasia. Threedimensional, organotypic cultures were grown either on a de-epidermalized human dermis with pre-existing basement membrane components on its surface (AlloDerm), on a Type I collagen gel that lacked basement membrane proteins or on polycarbonate membranes coated with purified extracellular matrix proteins. When tumor cells (HaCaT-II4) were mixed with normal keratinocytes (4:1/normals:HaCaT-II4), tumor cells selectively attached, persisted and proliferated at the dermal-epidermal interface in vitro and generated dysplastic tissues when transplanted to nude mice only when grown in the presence of the AlloDerm substrate. This stromal interface was permissive for tumor cell attachment due to the rapid assembly of structured basement membrane. When tumor cells were mixed with normal keratinocytes and grown on polycarbonate membranes coated with individual extracellular matrix or basement membrane components, selective attachment and significant intraepithelial expansion occurred only on laminin 1 and Type IV collagencoated membranes. This preferential adhesion of tumor cells restricted the synthesis of laminin 5 to basal cells where it was deposited in a polarized distribution. Western blot analysis revealed that tumor cell attachment was not due to differences in the synthesis or processing of laminin 5. Thus, intraepithelial progression towards premalignant disease is dependent on the selective adhesion of cells with malignant potential to basement membrane proteins that provide a permissive template for their persistence and expansion.
Smokeless tobacco is associated with pathologic alterations of the oral mucosa, yet its direct effects on human keratinocytes and fibroblasts in stratified squamous epithelium are not well-understood. We hypothesized that smokeless tobacco could modulate the growth of keratinocytes and fibroblasts in an in vivo-like, organotypic tissue model. To test this, we exposed organotypic cultures for 3 days to smokeless tobacco aqueous extracts and determined the changes in morphology and proliferation of human keratinocytes and fibroblasts. All smokeless tobaccos stimulated keratinocyte proliferation at low doses (0.25% w/v) and suppressed growth at higher doses (> 0.5% w/v). In contrast, smokeless tobacco extracts promoted fibroblast growth at all concentrations without inducing fibroblast turnover. Fibroblasts and keratinocytes, therefore, were differentially affected by smokeless tobacco extracts in an organotypic tissue model, suggesting incipient changes that may occur in vivo.
The role of cell-cell adhesion in the transition from premalignancy to invasive cancer is not well understood. The purpose of this study was to determine how abrogation of E-cadherin-mediated adhesion influenced early neoplastic progression in tissues that mimic human, premalignant disease. To accomplish this, E-cadherin function was abrogated in a human cell line representing an early stage in the transformation process (HaCaT-II-4 cells) that was grown in three-dimensional, organotypic cultures with intact basement membrane. Before modification, this cell line showed a paucity of cell adhesion structures by ultrastructural and immunohistochemical analysis, whereas immunoblot studies demonstrated that expression and association of E-cadherin and catenins were not diminished when compared with normal keratinocytes. To further reduce functional E-cadherin, II-4 cells were infected with a dominant-negative, recombinant adenovirus, expressing E-cadherin lacking an extracellular domain (AdECadEC). AdECadEC infection resulted in loss of endogenous E-cadherin and completely disrupted II-4 cell adhesion, as seen by loss of beta-catenin from II-4 cell junctions in monolayer culture. In three-dimensional cultures, AdECadEC-infected cells demonstrated disruption of tissue architecture, loss of cell-cell adhesion, and the invasion of individual tumor cells into the stroma. The induction of this invasive phenotype was associated with loss of basement membrane integrity, as seen by degradation of type IV collagen and laminin 5. These studies showed that loss of E-cadherin-mediated adhesion enabled acquisition of an invasive phenotype, suggesting that maintenance of intercellular adhesion and tissue organization plays a crucial part in suppressing the incipient stages of squamous cell cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.