ECG monitoring with an ICM was superior to conventional follow-up for detecting atrial fibrillation after cryptogenic stroke. (Funded by Medtronic; CRYSTAL AF ClinicalTrials.gov number, NCT00924638.).
This review examines the influence on heart rate variability (HRV) indices in athletes from training status, different types of exercise training, sex and ageing, presented from both cross-sectional and longitudinal studies. The predictability of HRV in over-training, athletic condition and athletic performance is also included. Finally, some recommendations concerning the application of HRV methods in athletes are made.The cardiovascular system is mostly controlled by autonomic regulation through the activity of sympathetic and parasympathetic pathways of the autonomic nervous system. Analysis of HRV permits insight in this control mechanism. It can easily be determined from ECG recordings, resulting in time series (RR-intervals) that are usually analysed in time and frequency domains. As a first approach, it can be assumed that power in different frequency bands corresponds to activity of sympathetic (0.04-0.15 Hz) and parasympathetic (0.15-0.4 Hz) nerves. However, other mechanisms (and feedback loops) are also at work, especially in the low frequency band. During dynamic exercise, it is generally assumed that heart rate increases due to both a parasympathetic withdrawal and an augmented sympathetic activity. However, because some authors disagree with the former statement and the fact that during exercise there is also a technical problem related to the non-stationary signals, a critical look at interpretation of results is needed. It is strongly suggested that, when presenting reports on HRV studies related to exercise physiology in general or concerned with athletes, a detailed description should be provided on analysis methods, as well as concerning population, and training schedule, intensity and duration. Most studies concern relatively small numbers of study participants, diminishing the power of statistics. Therefore, multicentre studies would be preferable. In order to further develop this fascinating research field, we advocate prospective, randomised, controlled, long-term studies using validated measurement methods. Finally, there is a strong need for basic research on the nature of the control and regulating mechanism exerted by the autonomic nervous system on cardiovascular function in athletes, preferably with a multidisciplinary approach between cardiologists, exercise physiologists, pulmonary physiologists, coaches and biomedical engineers.
In recent years more studies are using nonlinear dynamics to describe cardiovascular control. Because of the large dispersion of physiological data, it is important to have large studies with both male and female participants to establish a range of physiological healthy values. This study investigated the effect of gender and age on nonlinear indexes. Nonlinear scaling properties were studied by using 1/f slope (where f is frequency), fractal dimension, and detrended fluctuation analysis short- and long-term correlations (DFAalpha(1) and DFAalpha(2), respectively). Nonlinear complexity was described with correlation dimension (CD), Lyapunov exponent (LE), and approximate entropy (ApEn). The population consisted of 135 women and 141 men (age, 18-71 yr). Twenty-four hour ECG recordings were obtained by using Holter monitoring. The recordings were split into daytime (8 AM-9 PM) and nighttime (11 PM-6 AM). A day-night variation was present in all nonlinear heart rate variability (HRV) indexes, except for the CD in the female population. During the night the percentage of CD values of surrogate data files differing from the CD value of the original data increased. All nonlinear indexes were significantly correlated with age. Deeper analysis per age category of 10 yr showed a stabilization in the age decline of the fractal dimension and ApEn at the age of > or =40 yr. The vagal pathways seemed to be more involved in the generation of nonlinear fluctuations. Higher nonlinear behavior was evident during the night. No clear difference between men and women was found in the nonlinear indexes. Nonlinear indexes decline with age. This can be related to the concept of decreasing autonomic modulation with advancing age.
Background-The AT 1 receptor has been implicated in the pathogenesis of hypertension and atherosclerosis. Estrogen deficiency is also associated with cardiovascular diseases. Therefore, we examined the AT 1 receptor gene expression in ovariectomized rats with and without estrogen replacement therapy and the influence of estrogen on AT 1 receptor expression in cultured vascular smooth muscle cells. Methods and Results-Rat aortic tissue was examined 5 weeks after ovariectomy. In one group, estrogen (1.7 mg estradiol) was administered during the 5-week period. Functional experiments assessed angiotensin II-induced contraction of aortic rings. AT 1 receptor mRNA levels were measured by quantitative polymerase chain reaction and Northern blotting. AT 1 receptor density was assessed by radioligand binding assays. These techniques were also applied in cultured vascular smooth muscle cells. The efficacy of angiotensin II on vasoconstriction was significantly increased in aortas from ovariectomized rats. As assessed by radioligand binding assays, AT 1 receptor density was increased to 160% without changes in receptor affinity during estrogen deficiency. AT 1 receptor mRNA levels were consistently increased to 187% in ovariectomized rats compared with sham-operated animals. Estrogen substitution therapy in ovariectomized rats reversed this AT 1 receptor overexpression. To explore the underlying mechanisms, the direct influence of estradiol on AT 1 receptor expression was investigated in VSMCs. Estradiol (1 mol/L) led to a time-dependent downregulation of AT 1 receptor mRNA, with a maximum of 33.3% at 12 hours. There was a correlative decrease in AT 1 receptor density. Conclusions-This novel observation of estrogen-induced downregulation of AT 1 receptor expression could explain the association of estrogen deficiency with hypertension and atherosclerosis, because activation of the AT 1 receptor plays a key role in the regulation of blood pressure, fluid homeostasis, and vascular cell growth. (Circulation. 1998;97:2197-2201.)Key Words: angiotensin Ⅲ hypertension Ⅲ hormones Ⅲ genes Ⅲ muscle, smooth Ⅲ atherosclerosis T he low incidence of vascular diseases in premenopausal women and the rapid increase of the risk of cardiovascular events after menopause as well as the beneficial effects of estrogen replacement therapy on cardiac and vascular morbidity have suggested a important role of estrogens in the pathogenesis of atherosclerosis. [1][2][3] In addition to its effects on classic cardiovascular risk factors, eg, in the sense of a decrease of cholesterol plasma levels, 4,5 estrogen has been recognized to directly influence vascular as well as myocardial cells. Indeed, VSMCs, myocytes, and cardiac fibroblasts have been shown to contain functional estrogen receptors. [6][7][8] Moreover, there is increasing evidence that estrogen interferes with the RAS. The production of angiotensinogen is enhanced, whereas ACE levels are decreased, by estrogens. According to a recent report, plasma renin levels are also reduced during estroge...
The evolutionarily conserved protein Omp85 is required for outer membrane protein (OMP) assembly in gram-negative bacteria and in mitochondria. Its Escherichia coli homolog, designated BamA, functions with four accessory lipoproteins, BamB, BamC, BamD, and BamE, together forming the -barrel assembly machinery (Bam). Here, we addressed the composition of this machinery and the function of its components in Neisseria meningitidis, a model organism for outer membrane biogenesis studies. Analysis of genome sequences revealed homologs of BamC, BamD (previously described as ComL), and BamE and a second BamE homolog, Mlp. No homolog of BamB was found. As in E. coli, ComL/BamD appeared essential for viability and for OMP assembly, and it could not be replaced by its E. coli homolog. BamE was not essential but was found to contribute to the efficiency of OMP assembly and to the maintenance of OM integrity. A bamC mutant showed only marginal OMP assembly defects, but the impossibility of creating a bamC bamE double mutant further indicated the function of BamC in OMP assembly. An mlp mutant was unaffected in OMP assembly. The results of copurification assays demonstrated the association of BamC, ComL, and BamE with Omp85. Semi-native gel electrophoresis identified the RmpM protein as an additional component of the Omp85 complex, which was confirmed in copurification assays. RmpM was not required for OMP folding but stabilized OMP complexes. Thus, the Bam complex in N. meningitidis consists of Omp85/BamA plus RmpM, BamC, ComL/BamD, and BamE, of which ComL/BamD and BamE appear to be the most important accessory components for OMP assembly.Membrane-embedded -barrel proteins are found in the outer membranes (OMs) of gram-negative bacteria, mitochondria, and chloroplasts. Only in recent years have cellular components required for the assembly and insertion of these OM proteins (OMPs) into the OM been identified. Omp85, which was first characterized in Neisseria meningitidis, is the key protein of the OMP assembly machinery (41). The function of Omp85 has been preserved during evolution, not only in gramnegative bacteria (8,37,44,46) but also in mitochondria, where an Omp85 homolog, also known as Tob55 or Sam50, was shown to mediate the assembly of -barrel proteins into the OM (15,23,27). Accordingly, bacterial OMPs are still recognized by the eukaryotic assembly machinery: when expressed in yeast, bacterial OMPs were found to be assembled into the mitochondrial OM in a Tob55-dependent manner (43). Omp85 in Escherichia coli, which was recently renamed BamA, for -barrel assembly machinery (Bam) component A, is associated with at least four lipoproteins: BamB (formerly known as YfgL), BamC (NlpB), BamD (YfiO), and BamE (SmpA) (32,46). In E. coli, BamB, BamC, and BamE are not essential, but the phenotypes of deletion mutants suggest that these proteins contribute to the efficiency of OMP assembly. Like BamA, BamD is an essential protein in E. coli (24, 26), involved in OMP assembly (24). These lipoproteins are evolutionarily l...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.