The kinetics of the reactions of 26 primary and secondary amines with benzhydrylium ions in water were investigated photometrically. Because the parallel reactions of the benzhydrylium ions with hydroxide and water are much slower, the second-order rate constants for the reactions of amines with benzhydrylium ions could be determined reliably. Reactivities of anilines were also studied in acetonitrile solution. Plots of log k2,N for these reactions vs the electrophilicity parameters E of the benzhydrylium ions were linear, which allowed us to derive the nucleophilicity parameters N and s for amines as defined by the equation log k(20 degrees C)=s(E+N). Because the slope parameters for the different amines are closely similar; the relative nucleophilicities are almost independent of the electrophiles and can be expressed by the nucleophilicity parameters N. The correlation between nucleophilicity N and pKaH values is poor, and it is found that secondary alkyl amines and anilines are considerably more nucleophilic, while ammonia is much less nucleophilic than expected on the basis of their pKaH values.
The kinetics of the reactions of amino acids with stabilized diarylcarbenium ions (Ar(2)CH(+)) have been studied photometrically in aqueous solution at variable pH. In the range of 10.5 < pH < 12, the amino acids react much faster than the competing nucleophiles hydroxide and water. Though the pK(aH) values of the amino acids vary by almost four units, the nucleophilic reactivities of all primary amino groups differ by less than a factor of 4. The secondary amino group of proline is 10(2) times more reactive, and the thiolate site in cysteine exceeds the reactivities of the primary amino groups by a factor of 10(4). Nucleophilicity parameters N as defined by the correlation log k(20 degrees C) = s(N + E) have been determined in order to include amino acids into the most comprehensive nucleophilicity scales presently available, which provide a direct comparison of n-, pi-, and sigma-nucleophiles.
Rate and equilibrium constants for the reactions of pyridines with donor‐substituted benzhydrylium ions have been determined spectrophotometrically. The correlation equation log k(20 °C)=s(N+E), in which s and N are nucleophile‐specific parameters and E is an electrophile‐specific parameter, has been used to determine the nucleophilicity parameters of various pyridines in CH2Cl2 and aqueous solution and to compare them with N of other nucleophiles. It is found that the nucleophilic organocatalyst 4‐(dimethylamino)pyridine (DMAP) and tertiary phosphanes have comparable nucleophilicities and carbon basicities despite widely differing Brønsted basicities. For that reason, these reactivity parameters are suggested as guidelines for the development of novel organocatalysts. The Marcus equation is employed for the determination of the intrinsic barriers of these reactions.
The 5-position of pyrimidines in DNA duplexes offers a site for introducing alkynyl substituents that protrude into the major groove and thus do not sterically interfere with helix formation. Substituents introduced at the 5-position of the deoxyuridine residue of dU:dA base pairs may stabilize duplexes and reinforce helices weakened by a low G/C content, which would otherwise lead to false negative results in DNA chip experiments. Here we report on a method for preparing oligonucleotides with a 5-alkynyl substituent at a 2'-deoxyuridine residue by on-support Sonogashira coupling involving the fully assembled oligonucleotide. A total of 25 oligonucleotides with 5-alkynyl substituents were prepared. The substituents either decrease the UV melting point of the duplex with the complementary strand or increase it by up to 7.1 degrees C, compared with that of the unmodified control duplex. The most duplex-stabilizing substituent, a pyrenylbutyramidopropyne moiety, is likely to intercalate but does not prevent sequence-specific base pairing of the modified deoxyuridine residue or the neighboring nucleotides. It also increases the signal for a target strand when employed on a small oligonucleotide microarray. The ability to tune the melting point of a DNA dodecamer duplex with a single side chain over a temperature range of >11 degrees C may prove useful when developing DNA sequences for biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.