IntroductionThe course of the disease in SARS-CoV-2 infection in mechanically ventilated patients is unknown. To unravel the clinical heterogeneity of the SARS-CoV-2 infection in these patients, we designed the prospective observational Maastricht Intensive Care COVID cohort (MaastrICCht). We incorporated serial measurements that harbour aetiological, diagnostic and predictive information. The study aims to investigate the heterogeneity of the natural course of critically ill patients with a SARS-CoV-2 infection.Methods and analysisMechanically ventilated patients admitted to the intensive care with a SARS-CoV-2 infection will be included. We will collect clinical variables, vital parameters, laboratory variables, mechanical ventilator settings, chest electrical impedance tomography, ECGs, echocardiography as well as other imaging modalities to assess heterogeneity of the course of a SARS-CoV-2 infection in critically ill patients. The MaastrICCht is also designed to foster various other studies and registries and intends to create an open-source database for investigators. Therefore, a major part of the data collection is aligned with an existing national intensive care data registry and two international COVID-19 data collection initiatives. Additionally, we create a flexible design, so that additional measures can be added during the ongoing study based on new knowledge obtained from the rapidly growing body of evidence. The spread of the COVID-19 pandemic requires the swift implementation of observational research to unravel heterogeneity of the natural course of the disease of SARS-CoV-2 infection in mechanically ventilated patients. Our study design is expected to enhance aetiological, diagnostic and prognostic understanding of the disease. This paper describes the design of the MaastrICCht.Ethics and disseminationEthical approval has been obtained from the medical ethics committee (Medisch Ethische Toetsingscommissie 2020-1565/3 00 523) of the Maastricht University Medical Centre+ (Maastricht UMC+), which will be performed based on the Declaration of Helsinki. During the pandemic, the board of directors of Maastricht UMC+ adopted a policy to inform patients and ask their consent to use the collected data and to store serum samples for COVID-19 research purposes. All study documentation will be stored securely for fifteen years after recruitment of the last patient. The results will be published in peer-reviewed academic journals, with a preference for open access journals, while particularly considering deposition of the manuscripts on a preprint server early.Trial registration numberThe Netherlands Trial Register (NL8613).
Background/Objective: Current severe traumatic brain injury (TBI) outcome prediction models calculate the chance of unfavourable outcome after 6 months based on parameters measured at admission. We aimed to improve current models with the addition of continuously measured neuromonitoring data within the first 24 h after intensive care unit neuromonitoring. Methods: Forty-five severe TBI patients with intracranial pressure/cerebral perfusion pressure monitoring from two teaching hospitals covering the period May 2012 to January 2019 were analysed. Fourteen high-frequency physiological parameters were selected over multiple time periods after the start of neuromonitoring (0-6 h, 0-12 h, 0-18 h, 0-24 h). Besides systemic physiological parameters and extended Corticosteroid Randomisation after Significant Head Injury (CRASH) score, we added estimates of (dynamic) cerebral volume, cerebral compliance and cerebrovascular pressure reactivity indices to the model. A logistic regression model was trained for each time period on selected parameters to predict outcome after 6 months. The parameters were selected using forward feature selection. Each model was validated by leave-one-out cross-validation. Results: A logistic regression model using CRASH as the sole parameter resulted in an area under the curve (AUC) of 0.76. For each time period, an increased AUC was found using up to 5 additional parameters. The highest AUC (0.90) was found for the 0-6 h period using 5 parameters that describe mean arterial blood pressure and physiological cerebral indices. Conclusions: Current TBI outcome prediction models can be improved by the addition of neuromonitoring bedside parameters measured continuously within the first 24 h after the start of neuromonitoring. As these factors might be modifiable by treatment during the admission, testing in a larger (multicenter) data set is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.