TRMM microwave imager rain estimates are used to quantify the spatial distribution of rainfall in tropical cyclones (TCs) over the global oceans. A total of 260 TCs were observed worldwide from 1 January 1998-31 December 2000, providing 2121 instantaneous TC precipitation observations. To examine the relationship between the storm intensity, its geographical location, and the rainfall distribution, the dataset is stratified into three intensity groups and six oceanic basins. The three intensity classes used in this study are tropical storms (TSs) with winds Ͻ33 m s Ϫ1 , category 1-2 hurricane-strength systems (CAT12) with winds from 34-48 m s Ϫ1 , and category 3-5 systems (CAT35) with winds Ͼ49 m s Ϫ1. The axisymmetric component of the TC rainfall is represented by the radial distribution of the azimuthal mean rainfall rates (R). The mean rainfall distribution is computed using 10-km annuli from the storm center to a 500-km radius. The azimuthal mean rain rates vary with storm intensity and from basin to basin. The maximum R is about 12 mm h Ϫ1 for CAT35, but decreases to 7 mm h Ϫ1 for CAT12, and to 3 mm h Ϫ1 for TS. The radius from the storm center of the maximum rainfall decreases with increasing storm intensity, from 50 km for TS to 35 km for CAT35 systems. The asymmetric component is determined by the first-order Fourier decomposition in a coordinate system relative to the storm motion. The asymmetry in TC rainfall varies significantly with both storm intensity and geographic locations. For the global average of all TCs, the maximum rainfall is located in the front quadrants. The location of the maximum rainfall shifts from the front-left quadrant for TS to the front-right for CAT35. The amplitude of the asymmetry varies with intensity as well; TS shows a larger asymmetry than CAT12 and CAT35. These global TC rainfall distributions and variability observed in various ocean basins should help to improve TC rainfall forecasting worldwide.
Vertical wind shear and storm motion are two of the most important factors contributing to rainfall asymmetries in tropical cyclones (TCs). Global TC rainfall structure, in terms of azimuthal distribution and asymmetries relative to storm motion, has been previously described using the Tropical Rainfall Measuring Mission Microwave Imager rainfall estimates. The mean TC rainfall distribution and the wavenumber-1 asymmetry vary with storm intensity and geographical location among the six oceanic basins. This study uses a similar approach to investigate the relationship between the structure of TC rainfall and the environmental flow by computing the rainfall asymmetry relative to the vertical wind shear. The environmental vertical wind shear is defined as the difference between the mean wind vectors of the 200-and 850-hPa levels over an outer region extending from the radius of 200-800 km around the storm center. The wavenumber-1 maximum rainfall asymmetry is downshear left (right) in the Northern (Southern) Hemisphere. The rainfall asymmetry decreases (increases) with storm intensity (shear strength). The rainfall asymmetry maximum is predominantly downshear left for shear values Ͼ 7.5 m s Ϫ1. Large asymmetries are usually observed away from the TC centers. As TC intensity increases, the asymmetry maximum shifts upwind to the left. The analysis is further extended to examine the storm motion and the vertical wind shear and their collective effects on TC rainfall asymmetries. It is found that the vertical wind shear is a dominant factor for the rainfall asymmetry when shear is Ͼ5 m s Ϫ1. The storm motion-relative rainfall asymmetry in the outer rainband region is comparable to that of shear relative when the shear is Ͻ5 m s Ϫ1, suggesting that TC translation speed becomes an important factor in the low shear environment. The overall TC rainfall asymmetry depends on the juxtaposition and relative magnitude of the storm motion and environmental shear vectors in all oceanic basins.
The asymmetric dynamics of the hurricane inner-core region is examined through a novel analysis of high temporal resolution, three-dimensional wind fields derived from airborne dual-Doppler radar. Seven consecutive composites of Hurricane Olivia's (1994) wind field with 30-min time resolution depict a weakening storm undergoing substantial structural changes. The symmetric and asymmetric mechanisms involved in this transformation are considered separately. To zeroth order the weakening of the primary circulation is consistent with the axisymmetric vortex spindown theory of Eliassen and Lystad for a neutrally stratified atmosphere. Vertical shear, however, increased dramatically during the observation period, leading to a strong projection of the convection onto an azimuthal wavenumber 1 pattern oriented along the maximum vertical shear vector. Recent theoretical ideas elucidating the dynamics of vortices in vertical shear are used to help explain this asymmetry. The role of asymmetric vorticity dynamics in explaining some of the physics of hurricane intensity change motivates a special focus on Olivia's vorticity structure. It is found that an azimuthal wavenumber 2 feature dominates the asymmetry in relative vorticity below 3-km height. The characteristics of this asymmetry deduced from reflectivity and wind composites during a portion of the observation period show some consistency with a wavenumber 2 discrete vortex Rossby edge wave. Barotropic instability is suggested as a source for the wavenumber 2 asymmetry through a series of barotropic numerical simulations. Trailing bands of vorticity with radial wavelengths of 5-10 km are observed in the inner core approximately 20 km from the storm center, and may be symmetrizing vortex Rossby waves. Elevated reflectivity bands with radial scales comparable to those of the vorticity bands, also near 20-25-km radius, may be associated with these vorticity features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.