BackgroundAnimal African trypanosomiasis, sleeping sickness in humans and Nagana in cattle, is a resurgent disease in Africa caused by Trypanosoma parasites. Trans-sialidases expressed by trypanosomes play an important role in the infection cycle of insects and mammals. Whereas trans-sialidases of other trypanosomes like the American T. cruzi are well investigated, relatively little research has been done on these enzymes of T. congolense.ResultsBased on a partial sequence and an open reading frame in the WTSI database, DNA sequences encoding for eleven T. congolense trans-sialidase 1 variants with 96.3% overall amino acid identity were amplified. Trans-sialidase 1 variants were expressed as recombinant proteins, isolated and assayed for trans-sialylation activity. The purified proteins produced α2,3-sialyllactose from lactose by desialylating fetuin, clearly demonstrating their trans-sialidase activity. Using an HPLC-based assay, substrate specificities and kinetic parameters of two variants were characterized in detail indicating differences in substrate specificities for lactose, fetuin and synthetic substrates. Both enzymes were able to sialylate asialofetuin to an extent, which was sufficient to reconstitute binding sites for Siglec-4. A mass spectrometric analysis of the sialylation pattern of glycopeptides from fetuin revealed clear but generally similar changes in the sialylation pattern of the N-glycans on fetuin catalyzed by the trans-sialidases investigated.ConclusionsThe identification and characterization of a trans-sialidase gene family of the African parasite T. congolense has opened new perspectives for investigating the biological role of these enzymes in Nagana and sleeping sickness. Based on this study it will be interesting to address the expression pattern of these genes and their activities in the different stages of the parasite in its infection cycle. Furthermore, these trans-sialidases have the biotechnological potential to be used for enzymatic modification of sialylated glycoconjugates.
Hepatoma-derived growth factor (HDGF)-related proteins (HRPs) comprise a family of polypeptides named after HDGF, which was identified by its mitogenic activity towards fibroblasts. In the present study, we describe a hitherto unknown HRP, termed HRP-4. The cDNA of bovine HRP-4 (bHRP-4) predicts a polypeptide of 235 amino acids. Northern- and Western-blot analyses of various bovine tissues demonstrated that HRP-4 is only expressed in the testis. Recombinantly produced bHRP-4 and murine HDGF (mHDGF) histidine-tagged polypeptides display growth-factor activity for cultured primary human fibroblasts at an optimum concentration of 1 ng/ml in serum-free medium. The growth-factor activity declines with increasing concentrations to reach background levels at 1 microg/ml. The expression of the fusion proteins, bHRP-4-green fluorescent protein and mHDGF-green fluorescent protein, in HEK-293 cells demonstrates nuclear localization of the proteins. bHRP-4 and mHDGF bind to the glycosaminoglycans heparin and heparan sulphate, but not to chondroitin sulphate. Affinity constants determined for these interactions are between 6 and 42 nM. Comparison of the bHRP-4 amino acid sequence with HRP-1-3 and p52/75/lens epithelium-derived growth factor (LEDGF) shows that these proteins share a conserved N-terminal part of 91 amino acids but have C-termini of different lengths and charge. This demonstrates the modular structure of these proteins and allows its classification into three groups based on charge, size and sequence comparison. HRP-4, HRP-1 and HDGF are small acidic proteins, HRP-3 is a small basic protein, and HRP-2 and p52/75/LEDGF are larger basic proteins.
Trans-sialidases are key enzymes in the life cycle of African trypanosomes in both, mammalian host and insect vector and have been associated with the disease trypanosomiasis, namely sleeping sickness and nagana. Besides the previously reported TconTS1, we have identified three additional active trans-sialidases, TconTS2, TconTS3 and TconTS4, and three trans-sialidase like genes in Trypanosoma congolense. At least TconTS1, TconTS2 and TconTS4 are found in the bloodstream of infected animals. We have characterised the enzymatic properties of recombinant proteins expressed in eukaryotic fibroblasts using fetuin as model blood glycoprotein donor substrate. One of the recombinant trans-sialidases, TconTS2, had the highest specific activity reported thus far with very low sialidase activity. The active trans-sialidases share all the amino acids critical for the catalytic reaction with few variations in the predicted binding site for the leaving or acceptor glycan. However, these differences cannot explain the orders of magnitudes between their transfer activities, which must be due to other unidentified structural features of the proteins or substrates selectivity. Interestingly, the phylogenetic relationships between the lectin domains correlate with their specific trans-sialylation activities. This raises the question whether and how the lectin domains regulate the trans-sialidase reaction. The identification and enzymatic characterisation of the trans-sialidase family in T. congolense will contribute significantly towards the understanding of the roles of these enzymes in the pathogenesis of Animal African Trypanosomiasis.
HDGF (hepatoma-derived growth factor) and the HRPs (HDGF-related proteins) comprise a family of six proteins which display high identity in their N-terminus, but differ at the C-terminus. Here we investigate the patterns of expression of HDGF and HRP-3, by generating antisera specifically recognizing each growth factor. Whereas HRP-3 protein is expressed only in brain, HDGF can be found in a broad range of tissues, with highest levels in brain, testis, lung and spleen. The expression of HDGF and HRP-3 was found to be regulated during brain development, with highest levels around birth, followed by a decline until postnatal day 9. Interestingly, expression of HRP-3 increases again in adult brain. In situ hybridization and immunohistochemistry of cerebellar, cerebral and hippocampal brain slices showed that expression of both growth factors is not limited to areas of high proliferative activity. Both mRNAs and proteins are expressed in neuronal as well as glial cells. Immunocytochemistry of cultured neocortical neurons revealed that HDGF and HRP-3 can be found in the nucleus as well as the cytoplasm. HDGF is restricted to the neuronal soma, whereas HRP-3 can also be found in neurites. Thus the expression of HDGF and HRP-3 in differentiated cells, post-mitotic neurons and primary cultures of rat neocortex points to functions in brain that might not be limited to proliferation. In addition, their simultaneous expression in the same cell and their different subcellular localization in cultured neurons suggest different functions of HDGF and HRP-3 within single cells.
Acute i.p. Bryostatin-1 administration did not improve latency to escape but oral Bryostatin-1 significantly improved memory (measured by a reduction in latency to escape). This benefit of oral Bryostatin-1 administration was most apparent during the first 3 days of testing. These findings show that: 1) Bryostatin-1 is orally active in models of learning and memory, 2) this effect can be produced in less than 2 weeks and 3) this effect is not seen with i.p. administration. We conclude that oral Bryostatin-1 represents a novel, potent and long-acting memory enhancer with future clinical applications in the treatment of human AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.