Agricultural and industrial practices more than doubled the intrinsic rate of terrestrial N fixation over the past century with drastic consequences, including increased atmospheric nitrous oxide (N 2 O) concentrations. N 2 O is a potent greenhouse gas and contributor to ozone layer destruction, and its release from fixed N is almost entirely controlled by microbial activities. Mitigation of N 2 O emissions to the atmosphere has been attributed exclusively to denitrifiers possessing NosZ, the enzyme system catalyzing N 2 O to N 2 reduction. We demonstrate that diverse microbial taxa possess divergent nos clusters with genes that are related yet evolutionarily distinct from the typical nos genes of denitirifers. nos clusters with atypical nosZ occur in Bacteria and Archaea that denitrify (44% of genomes), do not possess other denitrification genes (56%), or perform dissimilatory nitrate reduction to ammonium (DNRA; (31%). Experiments with the DNRA soil bacterium Anaeromyxobacter dehalogenans demonstrated that the atypical NosZ is an effective N 2 O reductase, and PCRbased surveys suggested that atypical nosZ are abundant in terrestrial environments. Bioinformatic analyses revealed that atypical nos clusters possess distinctive regulatory and functional components (e.g., Sec vs. Tat secretion pathway in typical nos), and that previous nosZ-targeted PCR primers do not capture the atypical nosZ diversity. Collectively, our results suggest that nondenitrifying populations with a broad range of metabolisms and habitats are potentially significant contributors to N 2 O consumption. Apparently, a large, previously unrecognized group of environmental nosZ has not been accounted for, and characterizing their contributions to N 2 O consumption will advance understanding of the ecological controls on N 2 O emissions and lead to refined greenhouse gas flux models.nitrogen cycle | climate change
Tetrachloroethene (PCE) and trichloroethene (TCE) are ideal solvents for numerous applications, and their widespread use makes them prominent groundwater pollutants. Even more troubling, natural biotic and abiotic processes acting on these solvents lead to the accumulation of toxic intermediates (such as dichloroethenes) and carcinogenic intermediates (such as vinyl chloride). Vinyl chloride was found in at least 496 of the 1,430 National Priorities List sites identified by the US Environmental Protection Agency, and its precursors PCE and TCE are present in at least 771 and 852 of these sites, respectively. Here we describe an unusual, strictly anaerobic bacterium that destroys dichloroethenes and vinyl chloride as part of its energy metabolism, generating environmentally benign products (biomass, ethene and inorganic chloride). This organism might be useful for cleaning contaminated subsurface environments and restoring drinking-water reservoirs.
Six obligately anaerobic bacterial isolates (195T, CBDB1, BAV1, VS, FL2 and GT) with strictly organohalide-respiring metabolisms were obtained from chlorinated solvent-contaminated aquifers, contaminated and uncontaminated river sediments or anoxic digester sludge. Cells were non-motile with a disc-shaped morphology, 0.3–1 µm in diameter and 0.1–0.2 µm thick, and characteristic indentations on opposite flat sides of the cell. Growth occurred in completely synthetic, reduced medium amended with a haloorganic electron acceptor (mostly chlorinated but also some brominated compounds), hydrogen as electron donor, acetate as carbon source, and vitamins. No other growth-supporting redox couples were identified. Aqueous hydrogen consumption threshold concentrations were <1 nM. Growth ceased when vitamin B12 was omitted from the medium. Addition of sterile cell-free supernatant of Dehalococcoides-containing enrichment cultures enhanced dechlorination and growth of strains 195 and FL2, suggesting the existence of so-far unidentified stimulants. Dechlorination occurred between pH 6.5 and 8.0 and over a temperature range of 15–35 °C, with an optimum growth temperature between 25 and 30 °C. The major phospholipid fatty acids were 14 : 0 (15.7 mol%), br15 : 0 (6.2 mol%), 16 : 0 (22.7 mol%), 10-methyl 16 : 0 (25.8 mol%) and 18 : 0 (16.6 mol%). Unusual furan fatty acids including 9-(5-pentyl-2-furyl)-nonanoate and 8-(5-hexyl-2-furyl)-octanoate were detected in strains FL2, BAV1 and GT, but not in strains 195T and CBDB1. The 16S rRNA gene sequences of the six isolates shared more than 98 % identity, and phylogenetic analysis revealed an affiliation with the phylum Chloroflexi and more than 10 % sequence divergence from other described isolates. The genome sizes and G+C contents ranged from 1.34 to 1.47 Mbp and 47 to 48.9 mol% G+C, respectively. Based on 16S rRNA gene sequence comparisons, genome-wide average nucleotide identity and phenotypic characteristics, the organohalide-respiring isolates represent a new genus and species, for which the name Dehalococcoides mccartyi gen. nov., sp. nov. is proposed. Isolates BAV1 ( = ATCC BAA-2100 = JCM 16839 = KCTC 5957), FL2 ( = ATCC BAA-2098 = DSM 23585 = JCM 16840 = KCTC 5959), GT ( = ATCC BAA-2099 = JCM 16841 = KCTC 5958), CBDB1, 195T ( = ATCC BAA-2266T = KCTC 15142T) and VS are considered strains of Dehalococcoides mccartyi, with strain 195T as the type strain. The new class Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov. are described to accommodate the new taxon.
The 16S rRNA gene provides insufficient information to infer the range of chloroorganic electron acceptors used by different Dehalococcoides organisms. To overcome this limitation and provide enhanced diagnostic tools for growth measurements, site assessment, and bioremediation monitoring, a quantitative real-time PCR (qPCR) approach targeting 16S rRNA genes and three Dehalococcoides reductive dehalogenase (RDase) genes with assigned function (i.e., tceA, bvcA, and vcrA) was designed and evaluated. qPCR standard curves generated for the RDase genes by use of genomic DNA from Dehalococcoides pure cultures correlated with standard curves obtained for both Bacteria-and Dehalococcoides-targeted 16S rRNA genes, suggesting that the RDase genes are useful targets for quantitative assessment of Dehalococcoides organisms. RDase gene probe/primer pairs were specific for the Dehalococcoides strains known to carry the diagnostic RDase gene sequences, and the qPCR method allowed the detection of as few as 1 to 20 and quantification of as few as 50 to 100 tceA, bvcA, or vcrA gene targets per PCR volume. The qPCR approach was applied to dechlorinating enrichment cultures, microcosms, and samples from a contaminated site. In characterized enrichment cultures where known Dehalococcoides strains were enumerated, the sum of the three RDase genes equaled the total Dehalococcoides cell numbers. In site samples and chloroethane-dechlorinating microcosms, the sum of the three RDase genes was much less than that predicted by Dehalococcoides-targeted qPCR, totaling 10 to 30% of the total Dehalococcoides cell numbers. Hence, a large number of Dehalococcoides spp. contain as-yet-unidentified RDase genes, indicating that our current understanding of the dechlorinating Dehalococcoides community is incomplete.Chlorinated solvents are a well-recognized class of groundwater (GW) contaminants (1,7,41,53). Substantial knowledge regarding diverse groups of bacteria that partially dechlorinate tetrachloroethene (PCE) or trichloroethene (TCE) to cis-1,2-dichloroethene (cis-DCE) (5,12,19,30,50) or trans-DCE (13) has been accrued over the past decade. Partial reductive dechlorination contributes to the formation of DCEs and, in some cases, vinyl chloride (VC) (1,26,45). Environmental accumulation of VC is particularly troublesome because this compound is a proven human carcinogen; therefore, incomplete dechlorination of PCE and TCE does not result in detoxification.Recently, Dehalococcoides organisms were discovered as a deeply branching group within the green nonsulfur bacteria (Chloroflexi) (44). This physiologically and phylogenetically distinct bacterial group requires hydrogen as an electron donor and specific chloroorganic compounds as electron acceptors to support their energy metabolism. Dehalococcoides ethenogenes strain 195 was the first isolate described to dechlorinate PCE to VC and ethene (35); however, the last transformation step from VC to ethene occurred slowly in a cometabolic process (34). Similarly, metabolic dechlorination of TCE...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.