Autism spectrum disorders (ASDs) are developmental disorders which are thought primarily to affect social functioning. However, there is now a growing body of evidence that unusual sensory processing is at least a concomitant and possibly the cause of many of the behavioural signs and symptoms of ASD. A comprehensive and critical review of the phenomenological, empirical, neuroscientific and theoretical literature pertaining to visual processing in ASD is presented, along with a brief justification of a new theory which may help to explain some of the data, and link it with other current hypotheses about the genetic and neural aetiologies of this enigmatic condition.
BackgroundSynchrony judgments involve deciding whether cues to an event are in synch or out of synch, while temporal order judgments involve deciding which of the cues came first. When the cues come from different sensory modalities these judgments can be used to investigate multisensory integration in the temporal domain. However, evidence indicates that that these two tasks should not be used interchangeably as it is unlikely that they measure the same perceptual mechanism. The current experiment further explores this issue across a variety of different audiovisual stimulus types.Methodology/Principal FindingsParticipants were presented with 5 audiovisual stimulus types, each at 11 parametrically manipulated levels of cue asynchrony. During separate blocks, participants had to make synchrony judgments or temporal order judgments. For some stimulus types many participants were unable to successfully make temporal order judgments, but they were able to make synchrony judgments. The mean points of subjective simultaneity for synchrony judgments were all video-leading, while those for temporal order judgments were all audio-leading. In the within participants analyses no correlation was found across the two tasks for either the point of subjective simultaneity or the temporal integration window.ConclusionsStimulus type influenced how the two tasks differed; nevertheless, consistent differences were found between the two tasks regardless of stimulus type. Therefore, in line with previous work, we conclude that synchrony and temporal order judgments are supported by different perceptual mechanisms and should not be interpreted as being representative of the same perceptual process.
Point-light displays of human gait provide information sufficient to recognize the gender of a walker and are taken as evidence of the exquisite tuning of the visual system to biological motion. The authors revisit this topic with the goals of quantifying human efficiency at gender recognition. To achieve this, the authors first derive an ideal observer for gender recognition on the basis of center of moment (J. E. Cutting, D. R. Proffitt, & L. T. Kozlowski, 1978) and, with the use of anthropometric data from various populations, show optimal recognition of approximately 79% correct. Next, they perform a meta-analysis of 21 experiments examining gender recognition, obtaining accuracies of 66% correct for a side view and 71% for other views. Finally, results of the meta-analysis and the ideal observer are combined to obtain estimates of human efficiency at gender recognition of 26% for the side view and 47% for other views.
We present the methods that were used in capturing a library of human movements for use in computeranimated displays of human movement. The library is an attempt to systematically tap into and represent the wide range of personal properties, such as identity, gender, and emotion, that are available in a person's movements. The movements from a total of 30 nonprofessional actors (15 of them female) were captured while they performed walking, knocking, lifting, and throwing actions, as well as their combination in angry, happy, neutral, and sad affective styles. From the raw motion capture data, a library of 4,080 movements was obtained, using techniques based on Character Studio (plug-ins for 3D Studio MAX, AutoDesk, Inc.), MATLAB (The MathWorks, Inc.), or a combination of these two. For the knocking, lifting, and throwing actions, 10 repetitions of the simple action unit were obtained for each affect, and for the other actions, two longer movement recordings were obtained for each affect. We discuss the potential use of the library for computational and behavioral analyses of movement variability, of human character animation, and of how gender, emotion, and identity are encoded and decoded from human movement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.