Sensorineural hearing loss is a common sequela of acute and chronic otitis media, and the round window membrane (RWM) is currently being considered as a major route for noxious agents to pass from the middle ear cavity to the cochlea. Streptococcus pneumoniae, a major causative agent of otitis media, and Streptococcus pyogenes A produce molecularly related toxins, pneumolysin and streptolysin O (SLO), that form large pores in target membranes. In this study, we analyzed the effects of SLO on the permeability of the RWM. Resected RWMs from a total of 104 guinea pigs were embedded between two chambers of an in vitro system. One chamber was designated as the tympanal (cis) compartment, and the other was designated as the inner ear (trans) compartment. The permeability of normal and SLO-damaged RWMs towards Na ؉ , [ 14 C]mannitol, and proteins was investigated. SLO evoked permeability defects dose dependently in the RWM with fluxes of both Na ؉ and [ 14 C]mannitol being demonstrable over a time span of up to 8 h. Serum proteins and radioiodinated SLO were also shown to pass through the damaged RWM. Scanning electron microscopy revealed the morphological correlates to these results. We propose that damage to the RWM by potent pore-forming cytolysins leads to leakage of ions from the perilymph. Ionic disequilibrium and passage of noxious macromolecules to the cochlea could contribute to disturbances of the inner ear function.
The passage of radioiodinated streptolysin-O (SLO) and albumin through the round window membrane (RWM) was studied in vivo. When applied to the middle ear, SLO became quantitatively entrapped in this compartment and no passage to the cochlea occurred. However, flux of radioiodinated albumin through the toxin-damaged RWM was observed. We propose that the passage of noxious macromolecules, such as proteases, from a purulent middle-ear effusion may be facilitated by pore-forming toxins, resulting in cochlear damage and sensorineural hearing loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.