Eyes are central to face processing however their role in early face encoding as reflected by the N170 ERP component is unclear. Using eye tracking to enforce fixation on specific facial features, we found that the N170 was larger for fixation on the eyes compared to fixation on the forehead, nasion, nose or mouth, which all yielded similar amplitudes. This eye sensitivity was seen in both upright and inverted faces and was lost in eyeless faces, demonstrating it was due to the presence of eyes at fovea. Upright eyeless faces elicited largest N170 at nose fixation. Importantly, the N170 face inversion effect (FIE) was strongly attenuated in eyeless faces when fixation was on the eyes but was less attenuated for nose fixation and was normal when fixation was on the mouth. These results suggest the impact of eye removal on the N170 FIE is a function of the angular distance between the fixated feature and the eye location. We propose the Lateral Inhibition, Face Template and Eye Detector based (LIFTED) model which accounts for all the present N170 results including the FIE and its interaction with eye removal. Although eyes elicit the largest N170 response, reflecting the activity of an eye detector, the processing of upright faces is holistic and entails an inhibitory mechanism from neurons coding parafoveal information onto neurons coding foveal information. The LIFTED model provides a neuronal account of holistic and featural processing involved in upright and inverted faces and offers precise predictions for further testing.
High functioning young adults with a remote concussion may have inefficient recruitment of processing resources for target identification, evident by the attenuated P300. The negative correlations between response time and P300 amplitude suggest that the time necessary to accurately respond to targets increases as the efficiency of allocating processing resources decreases during highly demanding working memory tasks.
The N170 ERP component is a central neural marker of early face perception usually thought to reflect holistic processing. However, it is also highly sensitive to eyes presented in isolation and to fixation on the eyes within a full face. The lateral inhibition face template and eye detector (LIFTED) model (Nemrodov et al. in NeuroImage 97:81-94, 2014) integrates these views by proposing a neural inhibition mechanism that perceptually glues features into a whole, in parallel to the activity of an eye detector that accounts for the eye sensitivity. The LIFTED model was derived from a large number of results obtained with intact and eyeless faces presented upright and inverted. The present study provided a control condition to the original design by replacing eyeless with mouthless faces, hereby enabling testing of specific predictions derived from the model. Using the same gaze-contingent approach, we replicated the N170 eye sensitivity regardless of face orientation. Furthermore, when eyes were fixated in upright faces, the N170 was larger for mouthless compared to intact faces, while inverted mouthless faces elicited smaller amplitude than intact inverted faces when fixation was on the mouth and nose. The results are largely in line with the LIFTED model, in particular with the idea of an inhibition mechanism involved in holistic processing of upright faces and the lack of such inhibition in processing inverted faces. Some modifications to the original model are also proposed based on these results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.