A finite-element approach was formulated, aimed at enabling an integrated study of mechanical and biochemical factors that control the functional development of tissue engineered constructs. A nonlinear biphasic displacement-velocity-pressure description was combined with adjective and diffusive solute transport, uptake and biosynthesis. To illustrate the approach we focused on the synthesis and transport of macromolecules under influence of fluid flow induced by cyclic compression. In order to produce net transport the effect of dispersion was investigated. An abstract representation of biosynthesis was employed, three cases were distinguished: Synthesis dependent on a limited small solute, synthesis dependent on a limited large solute and synthesis independent of solute transport. Results show that a dispersion model can account for augmented solute transport by cyclic compression and indicate the different sensitivity to loading that can be expected depending on the size of the limiting solute.
This study is focused on the description of ductile fracture initiation, which is needed to predict product shapes in the blanking process. Two approaches are elaborated using a local ductile fracture model. According to literature, characterization of such a model should take place under loading conditions, comparable to the application. Therefore, the first approach incorporates the characterization of a ductile fracture model in a blanking experiment. The second approach is more favorable for industry. In this approach a tensile test is used to characterize the fracture model, instead of a complex and elaborate blanking experiment. Finite element simulations and blanking experiments are performed for five different clearances to validate both approaches. In conclusion it can be stated that for the investigated material, the first approach gives very good results within the experimental error. The second approach, the more favorable one for industry, yields results within 6 percent of the experiments over a wide, industrial range of clearances, when a newly proposed criterion is used. [S1087-1357(00)02202-4]
Abstract-Two types of scaffolds were developed for tissue engineering of the aortic valve; an electrospun valvular scaffold and a knitted valvular scaffold. These scaffolds were compared in a physiologic flow system and in a tissue-engineering process. In fibrin gel enclosed human myofibroblasts were seeded onto both types of scaffolds and cultured for 23 days under continuous medium perfusion. Tissue formation was evaluated by confocal laser scanning microscopy, histology and DNA quantification. Collagen formation was quantified by a hydroxyproline assay. When subjected to physiologic flow, the spun scaffold tore within 6 h, whereas the knitted scaffold remained intact. Cells proliferated well on both types of scaffolds, although the cellular penetration into the spun scaffold was poor. Collagen production, normalized to DNA content, was not significantly different for the two types of scaffolds, but seeding efficiency was higher for the spun scaffold, because it acted as a cell impermeable filter. The knitted tissue constructs showed complete cellular in-growth into the pores. An optimal scaffold seems to be a combination of the strength of the knitted structure and the cell-filtering ability of the spun structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.