Purpose Induction chemotherapy (IC) before radiotherapy lowers distant failure (DF) rates in locally advanced squamous cell carcinoma of the head and neck (SCCHN). The goal of this phase III trial was to determine whether IC before chemoradiotherapy (CRT) further improves survival compared with CRT alone in patients with N2 or N3 disease. Patients and Methods Treatment-naive patients with nonmetastatic N2 or N3 SCCHN were randomly assigned to CRT alone (CRT arm; docetaxel, fluorouracil, and hydroxyurea plus radiotherapy 0.15 Gy twice per day every other week) versus two 21-day cycles of IC (docetaxel 75 mg/m2 on day 1, cisplatin 75 mg/m2 on day 1, and fluorouracil 750 mg/m2 on days 1 to 5) followed by the same CRT regimen (IC + CRT arm). The primary end point was overall survival (OS). Secondary end points included DF-free survival, failure pattern, and recurrence-free survival (RFS). Results A total of 285 patients were randomly assigned. The most common grade 3 to 4 toxicities during IC were febrile neutropenia (11%) and mucositis (9%); during CRT (both arms combined), they were mucositis (49%), dermatitis (21%), and leukopenia (18%). Serious adverse events were more common in the IC arm (47% v 28%; P = .002). With a minimum follow-up of 30 months, there were no statistically significant differences in OS (hazard ratio, 0.91; 95% CI, 0.59 to 1.41), RFS, or DF-free survival. Conclusion IC did not translate into improved OS compared with CRT alone. However, the study was underpowered because it did not meet the planned accrual target, and OS was higher than predicted in both arms. IC cannot be recommended routinely in patients with N2 or N3 locally advanced SCCHN.
Molecular studies of squamous cell carcinoma of the head and neck (HNSCC) have demonstrated multiple genetic abnormalities such as activation of various oncogenes (Ras, Myc, epidermal growth factor receptor, and cyclin D1), tumor suppressor gene inactivation (TP53 and p16), and loss of heterozygosity at numerous chromosomal locations. Despite these observations, accurate and reliable biomarkers that predict patients at highest risk for local recurrence have yet to be defined. In an effort to identify gene expression signatures that may serve as biomarkers, we studied 41 squamous cell carcinoma tumors (25 primary and 16 locally recurrent) from various anatomical sites and 13 normal oral mucosal biopsy samples from healthy volunteers with microarray analysis using Affymetrix U133A GeneChip arrays. Differentially expressed genes were identified by calculating generalized t tests (P < 0.001) and applying a series of filtering criteria to yield a highly discriminant list of 2890 genes. Hierarchical clustering and image generation using standard software were used to visualize gene expression signatures. Several gene expression signatures were readily identifiable in the HNSCC tumors, including signatures associated with proliferation, extracellular matrix production, cytokine/chemokine expression, and immune response. Of particular interest was the association of a gene expression signature enriched for genes involved in tumor invasion and metastasis with patients experiencing locally recurrent disease. Notably, these tumors also demonstrated a marked absence of an immune response signature suggesting that modulation of tumor-specific immune responses may play a role in local treatment failure. These data provide evidence for a new gene expression-based biomarker of local treatment failure in HNSCC.
We previously reported that human head and neck squamous cell carcinomas (HNSCCs) express the pro-inflammatory and pro-angiogenic cytokines interleukin (IL)-1alpha, IL-6, IL-8, and granulocyte-macrophage colony-stimulating factor in vitro and in vivo. The promoter region of the genes encoding these cytokines include binding sites for the transcription factors nuclear factor (NF) kappaB/Rel A, activator protein-1 (AP-1), and CCAAT enhancer-binding protein beta (C/EBPbeta, or NF-IL6), which have been reported to contribute to activation of these cytokine genes. In the study presented here, we examined the activation, composition, and function of these transcription factors in HNSCC cell lines that express pro-inflammatory cytokines, by using electrophoretic mobility shift and reporter-gene assays. Constitutive activation of NF-kappaB, AP-1, and NF-IL6 DNA-binding proteins was detected. Supershift analysis with antibodies specific for NF-kappaB, AP-1, and NF-IL6 binding proteins showed that the NF-kappaB-binding protein included p65/Rel A and p50; AP-1 activity included c-jun, junB, junD, and Fra-1; and NF-IL6 included C/EBPbeta. Mutational analysis of the NF-kappaB, AP-1, and NF-IL6 sites in the IL-8 promoter region showed that NF-kappaB and AP-1 sites contributed to constitutive IL-8 reporter activity in HNSCC. HNSCC lines that exhibited increased IL-8 secretion relative to simian virus 40-immortalized and primary keratinocyte cell lines also demonstrated a concordant increase in NF-kappaB reporter activity relative to nonmalignant keratinocytes. We concluded that the early transcription factors NF-kappaB, AP-1, and NF-IL6 are constitutively activated in human HNSCC cell lines and that NF-kappaB and AP-1 promote expression of the pro-inflammatory and pro-angiogenic cytokine IL-8 in HNSCC. The demonstration of the activation of these transcription factors will be helpful in defining the identity and role of these and other early gene products that contribute to pathogenesis of the malignant phenotype in HNSCC and in defining potential targets for pharmacologic and molecular therapy of HNSCC. Mol. Carcinog. 26:119-129, 1999. Published 1999 Wiley-Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.