This research investigated the dose response and post-irradiation stability of water-equivalent PRESAGE® dosimeters exposed to synchrotron radiation. Water-equivalent PRESAGE® dosimeters were irradiated up to 1000 Gy in a synchrotron x-ray beam with a mean energy of 95.3 keV. The change in optical density was measured using UV/visible spectrophotometry pre- and post-irradiation using a wavelength of 630 nm. Dose response was found to be approximately linear from 0–200 Gy with saturation occurring above 300 Gy. The post-irradiation stability was determined by measuring the change in optical density at 10, 30, 60, 180, 420 min and 7, 21 and 33 d post-irradiation for three groups of dosimeters stored at different temperatures. Each group had two dosimeters irradiated at 50, 100, 200 and 300 Gy and each group was stored at a different temperature following irradiation: room temperature (22 °C), 4 °C and −18 °C. The optimal time for readout of the dosimeters varied with the post-irradiation storage temperature. The room temperature group had an optimal time-to-readout of 10 min for maximum signal before fading, while the 4 °C group was reasonably stable from 90 min to 1 week. The −18 °C group showed the least amount of ongoing post-irradiation development and fading with an optimal readout window from 30 min to 21 d. The intra-batch variation between the mean of each temperature control group was 4.2% at 10 min post-irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.