Sensitization, the prerequisite event in the development of allergic contact dermatitis, is a key parameter in both hazard and risk assessments. The pathways involved have recently been formally described in the OECD adverse outcome pathway (AOP) for skin sensitization. One single non-animal test method will not be sufficient to fully address this AOP and in many cases the use of a battery of tests will be necessary. A number of methods are now fully developed and validated. In order to facilitate acceptance of these methods by both the regulatory and scientific communities, results of the single test methods (DPRA, KeratinoSens, LuSens, h-CLAT, (m)MUSST) as well for a the simple '2 out of 3' ITS for 213 substances have been compiled and qualitatively compared to both animal and human data. The dataset was also used to define different mechanistic domains by probable protein-binding mechanisms. In general, the non-animal test methods exhibited good predictivities when compared to local lymph node assay (LLNA) data and even better predictivities when compared to human data. The '2 out of 3' prediction model achieved accuracies of 90% or 79% when compared to human or LLNA data, respectively and thereby even slightly exceeded that of the LLNA.
The goal of eliminating animal testing in the predictive identification of chemicals with the intrinsic ability to cause skin sensitization is an important target, the attainment of which has recently been brought into even sharper relief by the EU Cosmetics Directive and the requirements of the REACH legislation. Development of alternative methods requires that the chemicals used to evaluate and validate novel approaches comprise not only confirmed skin sensitizers and non-sensitizers but also substances that span the full chemical mechanistic spectrum associated with skin sensitization. To this end, a recently published database of more than 200 chemicals tested in the mouse local lymph node assay (LLNA) has been examined in relation to various chemical reaction mechanistic domains known to be associated with sensitization. It is demonstrated here that the dataset does cover the main reaction mechanistic domains. In addition, it is shown that assignment to a reaction mechanistic domain is a critical first step in a strategic approach to understanding, ultimately on a quantitative basis, how chemical properties influence the potency of skin sensitizing chemicals. This understanding is necessary if reliable non-animal approaches, including (quantitative) structure-activity relationships (Q)SARs, read-across, and experimental chemistry based models, are to be developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.