We propose a new generator of continuous distributions with one extra positive parameter called the odd Lindley-G family. Some special cases are presented. The new density function can be expressed as a linear combination of exponentiated densities based on the same baseline distribution. Various structural properties of the new family, which hold for any baseline model, are derived including explicit expressions for the quantile function, ordinary and incomplete moments, generating function, Rényi entropy, reliability, order statistics and their moments and k upper record values. We provide a Monte Carlo simulation study to evaluate the maximum likelihood estimates. We discuss estimation of the model parameters by maximum likelihood and provide an application to a real data set.
We propose a new family of distributions called the exponentiated Kumaraswamy-G class with three extra positive parameters, which generalizes the Cordeiro and de Castro's family. Some special distributions in the new class are discussed. We derive some mathematical properties of the proposed class including explicit expressions for the quantile function, ordinary and incomplete moments, generating function, mean deviations, reliability, Rényi entropy and Shannon entropy. The method of maximum likelihood is used to fit the distributions in the proposed class. Simulations are performed in order to assess the asymptotic behavior of the maximum likelihood estimates. We illustrate its potentiality with applications to two real data sets which show that the extended Weibull model in the new class provides a better fit than other generalized Weibull distributions.
Mathematical models that describe gas production are widely used to estimate the rumen degradation digestibility and kinetics. The present study presents a method to generate models by combining existing models and to propose the von Bertalanffy-Gompertz two-compartment model based on this method. The proposed model was compared with the logistic two-compartment one to indicate which best describes the kinetic curve of gas production through the semi-automated in vitro technique from different pinto peanut cultivars. The data came from an experiment grown and harvested at the Far South Animal Sciences station (Essul) in Itabela, BA, Brazil and gas production was read at 2, 4, 6, 8, 10, 12, 14, 17, 20, 24, 28, 32, 48, 72, and 96 h after the start of the in vitro fermentation process. The parameters were estimated by the least squares method using the iterative Gauss-Newton process in the software R version 3.4.1. The best model to describe gas accumulation was based on the adjusted coefficient of determination, residual mean squares, mean absolute deviation, Akaike information criterion, and Bayesian information criterion. The von Bertalanffy-Gompertz two-compartment model had the best fit to describe the cumulative gas production over time according to the methodology and conditions of the present study.
We study a three-parameter model named the gamma generalized Pareto distribution. This distribution extends the generalized Pareto model, which has many applications in areas such as insurance, reliability, finance and many others. We derive some of its characterizations and mathematical properties including explicit expressions for the density and quantile functions, ordinary and incomplete moments, mean deviations, Bonferroni and Lorenz curves, generating function, Rényi entropy and order statistics. We discuss the estimation of the model parameters by maximum likelihood. A small Monte Carlo simulation study and two applications to real data are presented. We hope that this distribution may be useful for modeling survival and reliability data.
A five-parameter distribution, called the exponentiated Burr XII Poisson distribution, is defined and studied. The model has as special sub-models some important lifetime distributions discussed in the literature, such as the logistic, log-logistic, Weibull, Burr XII and exponentiated Burr XII distributions, among several others. We derive the ordinary and incomplete moments, generating and quantile functions, Bonferroni and Lorenz curves, mean deviations, reliability and two types of entropy. The order statistics and their moments are investigated. The method of maximum likelihood is proposed for estimating the model parameters. We obtain the observed information matrix. An application to a real data set demonstrates that the new distribution can provide a better fit than other classical lifetime models. We hope that this generalization may attract wider applications in reliability, biology and survival analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.