Plodia interpunctella (Hu¨bner), the Indian meal moth, is a worldwide insect pest of stored-products and processed food commodities. It can infest a variety of products and is perhaps the most economically important insect pest of processed food. In this review, we summarize the biology of P. interpunctella, discuss oviposition and development in relation to temperature, environment and food source, examine studies involving sampling and detection, describe various aspects of integrated control, summarize the current knowledge regarding management of P. interpunctella, and address potential areas for new research. The use of reduced-risk insecticides, non-chemical control, targeted pest management through spatial analysis and other means of identifying specific locations of infestations, and computer models that simulate population growth, are examples of some of those new areas of research.
Spinosad is a commercial reduced-risk pesticide that is naturally derived. Spinosad's performance was evaluated on four classes of wheat (hard red winter, hard red spring, soft red winter, and durum wheats) against adults of the lesser grain borer, Rhyzopertha dominica (F.); rice weevil, Sitophilus oryzae (L.); sawtoothed grain beetle, Oryzaephilus surinamensis (L.); red flour beetle, Tribolium castaneum (Herbst); and larvae of the Indianmeal moth, Plodia interpunctella (Hübner). Beetle adults (25) or P. interpunctella eggs (50) were exposed to untreated wheat and wheat treated with spinosad at 0.1 and 1 mg (AI)/kg of grain. On all untreated wheat classes, adult beetle mortality ranged from 0 to 6%, and P. interpunctella larval mortality ranged from 10 to 19%. The effects of spinosad on R. dominica and P. interpunctella were consistent across all wheat classes. Spinosad killed all exposed R. dominica adults and significantly suppressed progeny production (84-100%) and kernel damage (66-100%) at both rates compared with untreated wheat. Spinosad was extremely effective against P. interpunctella on all wheat classes at 1 mg/kg, based on larval mortality (97.6-99.6%), suppression of egg-to-adult emergence (93-100%), and kernel damage (95-100%), relative to similar effects on untreated wheats. The effects of spinosad on S. oryzae varied among wheat classes and between spinosad rates. Spinosad was effective against S. oryzae, O. surinamensis and T. castaneun only on durum wheat at 1 mg/kg. Our results suggest spinosad to be a potential grain protectant for R. dominica and P. interpunctella management in stored wheat.
Red flour beetles, Tribolium castaneum (Herbst), and confused flour beetles, Tribolium confusum (DuVal), were exposed for 8-72 h to diatomaceous earth (Protect-It) at 22, 27, and 32 degrees C and 40, 57, and 75% RH (9 combinations). Insects were exposed to the diatomaceous earth at 0.5 mg/cm2 on filter paper inside plastic petri dishes. After exposure, beetles were held for 1 wk without food at the same conditions at which they were exposed. Mortality of both species after initial exposure was lowest at 22 degrees C but increased as temperature and exposure interval increased, and within each temperature decreased as humidity increased. With 2 exceptions, all confused flour beetles were still alive after they were exposed at 22 degrees C, 57 and 75% RH. Mortality of both species after they were held for 1 wk was greater than initial mortality for nearly all exposure intervals at each temperature-humidity combination, indicating delayed toxic effects from exposure to diatomaceous earth. For both species, the relationship between mortality and exposure interval for initial and 1-wk mortality was described by linear, nonlinear, quadratic, and sigmoidal regression. Mortality of confused flour beetles was lower than mortality of red flour beetles exposed for the same time intervals for 46.7% of the total comparisons at the various temperature-relative humidity combinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.